
www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

09/12/21 1

Forensics for System Administrators

Memory Acquisition I

www.geant.org

Klaus Möller
WP8-T1

Webinar, 9th of December 2021

Public

www.geant.orgwww.geant.org2 |

• Motivation
• Technical Basics

– Virtual and Physical Memory

• Main Memory Dumps
– Simple

– Kernel Module

• System Crashdumps
– Linux Kdump

– Windows Crashdumps

Agenda - Part I

2 |

www.geant.orgwww.geant.org3 |

• Collection of Virtual Machine Memory
– VMware

– VirtualBox

– Linux KVM/QEMU

• Swap & Hibernation
– Linux Swap files/partitions

– Windows pagefile, hibernation file

• Single Process Memory Dumps
– Corefiles

– Process Explorer

Agenda - Part II

3 |

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

09/12/21 4

Motivation

www.geant.org

www.geant.orgwww.geant.org5 |

Volatile System State - What are we looking for?
● Running processes

– Path, command line arguments
– Program code (executable, scripts)
– Internal state (keys, passwords, kerberos tickets, etc.)
– List of open files/sockets/network connections (w/ IP-addresses)

● Kernel
– Version/executable, loaded modules/drivers
– System call table, interrupt table, disk encryption keys, etc.

● Name caches: DNS, NIS, NetBIOS, …
● Currently logged in users
● Temporary filesystems (tmpfs)

www.geant.orgwww.geant.org6 |

Volatile System State - How to get it

● Easy, isn’t it?
– Run ps, lsof, ss, lsmod, uname, date, uptime, …
– And save the results somewhere

● Somewhere?
– Not on the local disk or memory - that would change system state

(more then necessary)
– Better: Attached additional storage (e.g. USB-Stick)
– Or save through the network to another machine

● Use netcat, cryptcat, socat, ssh, etc.

● That’s what some live response tools do

www.geant.orgwww.geant.org7 |

What about Rootkits?

● Their primary purpose is try to hide intruder presence/activity
– Processes, files, network connections, etc.

● User space rootkits
– Replacing system commands or shared libraries
– Injecting malicious code directly into processes

● Kernel space rootkits
– Manipulate Interrupt Table or Interrupt Handler code or System Call

Table or System Call Code
– Manipulation of kernel data structures

● What about “as little trust as possible in a compromised system”?
– Point is, we cannot trust a compromised system

www.geant.orgwww.geant.org8 |

How to bypass Rootkits

Hardware

Kernel space

User space

Disk

Driver

Other

Driver

Virtual Memory

Management

Soft

Interrupt

Interrupt

Handling

System Call
Dispatching

(Virtual) File
System

Process

Managment
Network

Stack(s)

User

Program
System Program

(ps, ls, svchost, ...)

Shared Libraries

(*.so, *.dll, ...)

Forensic
Program

Static

Library

Interrupt
Table

System

Call
Table

● User space
– Use tools from a trustworthy source
– Put them on a CD/DVD or USB-Stick

with hardware read-only switch
– Statically linked libraries (or add

clean libraries to medium)

● Kernel space
– Bypass system-call chain as much

as possible
– Check the kernel-data structures

carefully for manipulation
– Not perfect, but the best we can do

www.geant.orgwww.geant.org9 |

Solution
● Access OS data structures directly, bypassing syscalls

 Kernel debugger

● Copy the memory contents and analyse them later on another
system
 Hardware, DMA through IOMMU

● PCIe cards
● Firewire, Thunderbolt, USB-4 interface

 Software
● Copying from /dev/mem or \\.\Device\PhysicalMemory
● Crash dumps
● Copying virtual machine (VM) memory from the Hypervisor
● Swap/Hibernation partition/file

www.geant.orgwww.geant.org10 |

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

09/12/21 10

Computer Memory

www.geant.org

www.geant.orgwww.geant.org11 |

Volatility of Traces in RAM

Memory contents of
terminated processes
(Venema, 2005)

Memory contents of running
processes
(Chow et. al, Usenix Security 2005)

www.geant.orgwww.geant.org12 |

Virtual Memory (VM)
● Make it appear as if every process has the

whole memory for itself
– No need to care about other processes data,

or the kernel
– Each process (and the kernel too) has one

large linear address space
– Broken up into chunks, called pages

● Even better, make it appear, as if all of it is
actually available
– I.e. more memory than physically installed

RAM
– Everything not kept in RAM has a copy on disk

● In the filesystem (executables, shared libraries,
memory mapped files)

● Or swap space (file or partition)

RAM

Disk storage

CPU

Virtual address

Mapping
(MMU)

Page frames

Page in
RAM

Page fault
(not in RAM)

TLB

www.geant.orgwww.geant.org13 |

Virtual Memory Management (VMM)
● On each memory

address access, the OS
needs to
– Translate from virtual

addresses to physical
addresses

– Hardware support in
form of the Memory
Management Unit
(MMU)

– Translation Lookaside
Buffer (TLB): Cache to
speed up page table
lookups

Virtual Address 0xffff01020304567

0x01 0x02 0x03 0x567
Level 4
Index

Level 3
Index

Level 2
Index Offset

Unused 0xffff 0x01020304 0x567"Virtual page number" Offset

Level 1

Directory

Lvl 1 Entry

Level 2

Directory

Lvl 2 Entry

Level 3

Directory

Lvl 3 Entry

Level 4

Directory

Lvl 4 Entry

Physical Page

Physical Address

Unused 0xffff 0x04
Level 1
Index

Base

Register

www.geant.orgwww.geant.org14 |

Impact on Memory Analysis

● When doing the analysis off-line
● Addresses (i.e. pointers) we see in the memory dump are

virtual addresses
● The offsets into the memory dump file are physical addresses
● During analysis, we have to go back and forth between the two,

i.e. we have to re-do the MMUs task
● Thankfully, the forensic tool takes care of this
● The page tables will always be present in RAM and thus in

memory dump
● Otherwise the task would be undoable

www.geant.orgwww.geant.org15 |

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

09/12/21 15

Main Memory Dumps

www.geant.org

www.geant.orgwww.geant.org16 |

Memory Collection on Linux

● Basic approach
– dd if=/dev/xxx | netcat target-host target-port
– Fails after reading 1 Megabyte under Linux

● Newer (since 2003) Linux/Windows versions do not allow reading
full kernel memory from user space

● Need special driver (module) to access memory from kernel space

> grep DEVMEM /boot/config-$(uname -r)

CONFIG_DEVMEM=y # has /dev/mem

CONFIG_ARCH_HAS_DEVMEM_IS_ALLOWED=y

CONFIG_STRICT_DEVMEM=y # restrict access to PCI & BIOS

CONFIG_IO_STRICT_DEVMEM=y # restrict to idle IO regions

www.geant.orgwww.geant.org17 |

Memory Imaging Process

1. Preparation

a) Build a profile for volatility or other tool (if needed)

b) Compile the collection tool/kernel module

2. Collection

a) To disk or over the network to a remote systems disk

3. Checking the image

a) Testing the checksum

www.geant.orgwww.geant.org18 |

Profiles?

● Without additional information, ...
– We would have no idea what kind of data is at a given address

● Integer, float, string, structure, …

– Or what it is used for
● Process, socket, file, directory, etc.

● What’s needed is the symbol table from the compiler
– Can be used directly for debuggers

● Some forensic tools build more abstract, condensed structures
from it
– Volatility terminology: Profile

www.geant.orgwww.geant.org19 |

Linux: Building a Volatility (2.x) Profile

1. Determine kernel version

2. Clone repository

3. Compile

4. Pack

> uname -r
5.3.18-lp152.47-default

> git clone https://github.com/volatilityfoundation/volatility.git

> cd volatility/tools/linux/
> make

> zip newprofile.zip module.dwarf /boot/System.map-$(uname -r)

Live Demo

www.geant.orgwww.geant.org20 |

Linux: Building a Volatility 3 Profile

1. Clone repository

2. Compile

3. Generate profile (Linux & Mac OS X only)

> git clone https://github.com/volatilityfoundation/dwarf2json.git

> cd dwarf2json
> go build

> dwarf2json linux --system-map /boot/System.map -$(uname -r) \
 $(uname -r).json

Live Demo

www.geant.orgwww.geant.org21 |

Linux: Compiling the Kernel Module

1. Clone LiME repository

2. Compile

> git clone https://github.com/504ensicsLabs/LiME/

> cd LiME/src
> make clean
> make

Live Demo

www.geant.orgwww.geant.org22 |

Linux: Collecting the Memory (to disk)

● Raw image

● Image in LiME format

● Compressed image

● Everything together (with checksum)

insmod lime.ko "path=/tmp/testdump.raw format=raw"

insmod lime.ko "path=/tmp/testdump.raw format=lime"

insmod lime.ko "path=/tmp/testdump.raw format=lime compress=1"

insmod lime.ko "path=/tmp/testdump.raw format=lime compress=1
digest= sha512"

Live Demo

Remember to not write to local disk,
use another medium or the network!

www.geant.orgwww.geant.org23 |

Linux: Collecting the Memory (over the network)

● With netcat
● On the compromised host

● On the host taking the image

● With ssh & netcat
● From the host taking the image (2nd line on the compromised host)

● On the host taking the image
> netcat localhost 12345 > dumpfile

> ssh -L 12345:localhost:<target port> <compromised host>
insmod lime.ko "path=tcp:12345 format=lime"

Live Demo

insmod lime.ko "path=tcp:12345 format=lime localhostonly=0"

> netcat compromised-host 12345 > dumpfile

www.geant.orgwww.geant.org24 |

Checking the image

● Cryptographic hash sums are used to assert the chain of custody
– I.e. that the image has not been tampered with (since acquisition)

● Technically
– Use the build-in hash sum features of the collection tool

● Faster, one less thing to forget

– Do not use broken hash algorithms like MD5 or SHA-1
● SHA256 is OK, SHA512 is better

● Organisationally
– 4 eyes principle while collecting the memory
– Store & transfer the checksum apart from the image

● Or tampering becomes trivial

– Even better: Cryptographic signatures, PGP or S/MIME, your choice

www.geant.orgwww.geant.org25 |

When Checking the Hash Sum ...

● In combination with compression
– Using the build-in checksum feature, the checksum is that of the

uncompressed image (i.e. before compression)

– Using external tools, the checksum is that of the compressed image
(i.e. after compression)

> sha512sum /tmp/testdump.lime; cat /tmp/testdump.lime.sha512
d4a0047f88fecc5336fb097670ec9ec3cc4...
19e625b5f013443785af58fa224cfa3a9a3...

> file /tmp/testdump.lime.sha512
/tmp/testdump.lime: zlib compressed data
> unpigz -c /tmp/testdump.lime | sha512sum; cat /tmp/testdump.lime.sha512
19e625b5f013443785af58fa224cfa3a9a3 … 7d6bff60b5bf0 -
19e625b5f013443785af58fa224cfa3a9a3 … 7d6bff60b5bf0

www.geant.orgwww.geant.org26 |

Windows: Collecting Memory & Checksum

● Take the image

● Take the checksum
● With certutil (Windows build-in tool)

● With PowerShell

 winpmem_mini_x64_rc2.exe testdump.raw

 certutil -hashfile testdump.raw SHA512

> Get-FileHash -Path y:\testdump.raw -Algorithm SHA512

www.geant.orgwww.geant.org27 |

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

09/12/21 27

Crashdumps

www.geant.org

www.geant.orgwww.geant.org28 |

Kernel Debugger

● Several facilities for debugging errors in the kernel
– Error message printing (printk) , tracing frameworks (e. g. dtrace),

debuggers

● Live kernel debugging = Analysis of a running system through an
attached debugger
– Usually through the serial console (JTAG for embedded systems)
– Network consoles are appearing (Linux kgdboe)

● Linux: kdb and kgdb
● Windows: KD, WinDbg

● Post mortem debugging through crash dumps
– Can also be imported into forensic tools

● E. g. volatility

www.geant.orgwww.geant.org29 |

Crash Dumps

● Advantages
– Dump file can be analysed with debuggers
– Memory state does not change while dump takes place
– Works with practically every operating system

● Disadvantages
– Requires preparation of the OS, i.e. crash dump configuration

● May need to be rebooted for configuration to take effect

– Triggering a crash dump often will trigger a (subsequent) reboot

● Live dumps (or Live debugging) will usually not trigger reboots

www.geant.orgwww.geant.org30 |

Linux Crash Dump Preparation

● Install kdump and kexec packages - distribution dependant
● Kernel needs several options enabled

– CONFIG_KEXEC=y

– CONFIG_CRASH_DUMP=y

– CONFIG_PROC_VMCORE=y

– CONFIG_SYSFS=y

● Kernel needs to be booted with crashkernel=xxxM option
– xxxM number of megabytes reserved for crash kernel (64 - 256 usually)

● Configuration files /etc/sysconfig/kdump and/or /etc/kdump.conf

● Enable kdump.service (systemctl)

www.geant.orgwww.geant.org31 |

Linux Crash Dump Execution

● Kernel gets signal to crash and hands over control to the crash
kernel via kexec mechanism

● Crash kernel then does the actual dumping of the kernel
● Trigger as root (uid == euid!)

● Dump file can be written over the network (SSH or NFS)

echo 1 > /proc/sys/kernel/sysrq
echo c > /proc/sysrq-trigger

www.geant.orgwww.geant.org32 |

Linux Crash Dump: Live Kernel Dump

● Copy from /proc/kcore
– Copy of the systems memory in ELF format - can be analysed with standard

debuggers (Gdb)
– Huge (terrabytes), but sparse file
– Need to copy only the occupied pages, see /proc/iomem

● Tools:
– getkcore from volatility toolkit (tools/linux/kcore)
– kcore_dump from “schlafwandler”

● Version that is supposed to work with KASLR for kernel version > 4.8
● Very little testing, production ready?

● Don’t forget debugging symbols!

www.geant.orgwww.geant.org33 |

Windows 10 Crash Dump: Enable Dump

● Memory Dump Settings (GUI)
– Control Panel → System and

Security → System

– Advanced system settings →
Advanced

– Startup and Recovery →
Settings

– Select Kernel memory dump or
Complete memory dump under
Writing Debugging Information

– Reboot

● CLI
wmic recoveros set DebugInfoType=1
wmic recoveros set DebugFilePath=PATH\TO\DUMP

www.geant.orgwww.geant.org34 |

Windows 10 Crash Dump: Setting Keyboard Sequence

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\i8042prt\Parameters
Key CrashOnCtrlScroll, Value (DWORD) 0x01 # PS2 keyboards

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\kbdhid\Parameters
Key CrashOnCtrlScroll, Value (DWORD) 0x01 # USB keyboards

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\hyperkbd\Parameters
Key CrashOnCtrlScroll, Value (DWORD) 0x01 # Hyper-V keyboards

● To prepare for initiating a crash dump from the keyboard
– Create one of the following registry keys
– Depending on your keyboard type

www.geant.orgwww.geant.org35 |

Windows 10 Crashdump Execution

● From keyboard (when prepared)
– Press right CTRL key (and hold down) while pressing SCROLL

LOCK twice
– To change the key:

● https://docs.microsoft.com/en-us/windows-hardware/
drivers/debugger/forcing-a-system-crash-from-the-
keyboard

● Alternatively, use the Sysinternals NotMyFault Tool
– Part of Sysinternals Suite

notMyfault64c.exe /crash reason

www.geant.orgwww.geant.org36 |

Windows 10 Live Kernel Dump

● Install Windows debugging tools (e.g. from SDK or other source)
● Install LiveKD from Sysinternals

 LiveKD.exe
0: kd> .dump /f c:\path\to/dump.dmp

www.geant.orgwww.geant.org37 |

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

09/12/21 37

Wrapping Up

www.geant.org

www.geant.orgwww.geant.org38 |

Memory Forensic Tool Quality Criteria
● Operating system & Hardware architecture support
● How well does the tool work in adversarial conditions?

– Rootkits/Anti-Forensics, DRM/Copy-protection SW, faulty memory, etc.
– Past bugs/vulnerabilities

● GUI, CLI, stand-alone, etc.
● Image file support

– File types (raw, LiME, etc.)
– Compression, splitting image over multiple files, …
– Writing over network (raw, HTTPs)

● Memory footprint?

● Time to capture the memory image? (GiB/s)

www.geant.orgwww.geant.org39 |

What have you learned?

● There are many way to get to a systems main memory
● Most require some preparation

– Some even installing hardware beforehand

● Kernel debugging is hard, although very powerful
– However, requires a lot of knowledge & expertise

● Collecting memory through a special kernel module/driver
– Most generic, with regards to requirements
– Preparation (i.e. profile building) can be done offline

● Crash dumps can be an alternative
● More coming up: VM hosts, Swap, Hibernation, ...

www.geant.orgwww.geant.org40 |

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

09/12/21 40

Thank you

www.geant.org

Any questions?

Next Webinar: Memory Acquisition II

December 14th, 2021

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2).
The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 731122 (GN4-2).

www.geant.orgwww.geant.org41 |

References: Books on Forensics

● Michael Hale Ligh, et al: The Art of Memory Forensics: Detecting
Malware and Threats in Windows, Linux, and Mac Memory, John
Wiley & Sons, Inc. 2014, ISBN: 978-1-118-82509-9

● Bruce Nikkel: Pactical Forensic Imaging, No Starch Press Inc. 2016,
ISBN-13: 978-1-59327-793-2

● Harlan Carvey: Windows Forensic Analysis, Syngress Publishing Inc.
2009

www.geant.orgwww.geant.org42 |

References: Operating System Internals
● Pavel Yosifovich et al: Windows Internals, Part 1 (System architecture), 7th Ed., Microsoft Press

2017, ISBN-13: 978-0735684188
● Allievi Andrea et al: Windows Internals, Part 2 (Developer Reference), 7th Ed., Microsoft Press

2021, ISBN-13: 978-0135462409
● Robert Love: Linux Kernel Development 3rd Ed., Addison-Wesley Professional 2010, ISBN-13:

978-0672329463
● Robert Love: Linux System Programming: Talking Directly to The Kernel And C Library, 2nd Ed.,

O'Reilly2013, ISBN-13 : 978-1449339531
● The FreeBSD Documentation Project: FreeBSD Handbook,
https://docs.freebsd.org/en/books/handbook/

● The FreeBSD Documentation Project: FreeBSD Developers' Handbook,
https://docs.freebsd.org/en/books/developers-handbook/

● The FreeBSD Documentation Project: FreeBSD Architecture Handbook,
https://docs.freebsd.org/en/books/arch-handbook/

● Marshall Kirk McKusick et al.: The Design and Implementation of the FreeBSD Operating
System: Edition 2, Addison-Wesley Professional 2014, ISBN-13: 978-0321968975

www.geant.orgwww.geant.org43 |

References: Images und Testcases

● Computer Forensic Reference Data Sets (CFReDS)
http://www.cfreds.nist.gov/

● Digital Forensics Tool Testing Images
http://dftt.sourceforge.net/

● Digital Forensics Research Workshop (DFRWS)
http://www.dfrws.org/

● Honeynet Project Challenges
https://www.honeynet.org/challenges

www.geant.orgwww.geant.org44 |

References: Memory Imaging Tools (Open Source)

● Microsoft AVML: https://github.com/microsoft/avml
● Volatility LiME: https://github.com/504ensicsLabs/LiME

– Schlafwandlers kcore_dump
https://schlafwandler.github.io/posts/dumping-/proc/kcore/

● Hal Pomeranz automation script for AVML/LiME:
https://github.com/halpomeranz/lmg

● Velocidex Pmem Suite (lin|win|osx)pmem:
https://winpmem.velocidex.com/

● Moonsols mdd (v 1.3, 2013, for very old Windows versions):
https://sourceforge.net/projects/mdd/

www.geant.orgwww.geant.org45 |

Sample Forensic Distributions
● SIFT (SAS Investigative Forensic Toolkit):
https://www.sans.org/tools/sift-workstation/

● CAINE (Computer Aided Investigative Environment): https://www.caine-
live.net/

● GRML Forensic: https://grml-forensic.org/
● ALT Linux Rescue: https://en.altlinux.org/Rescue
● BlackArch: https://blackarch.org/
● BackBox: https://www.backbox.org/
● KALI (formerly Backtrack): https://www.kali.org/downloads/
● Matriux: http://www.matriux.com/
● Safe Boot Disk (Windows based):
https://www.forensicsoft.com/help/SAFE_Boot1-1/

www.geant.orgwww.geant.org46 |

References: Standards

● US NIST Special Publication 800-86 Guide to Integrating Forensic
Techniques into Incident Response, 2006,
https://doi.org/10.6028/NIST.SP.800-86

● ENISA Trainings for Cybersecurity Specialists,
https://www.enisa.europa.eu/topics/trainings-for-
cybersecurity-specialists/online-training-material?
tab=articles

● IETF RFC 3227 Guidelines for Evidence Collection and Archiving,
https://tools.ietf.org/html/rfc3227

