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Volatile System State - What are we looking for?
● Running processes 

– Path, command line arguments
– Program code (executable, scripts)
– Internal state (keys, passwords, kerberos tickets, etc.)
– List of open files/sockets/network connections (w/ IP-addresses)

● Kernel 
– Version/executable, loaded modules/drivers
– System call table, interrupt table, disk encryption keys, etc.

● Name caches: DNS, NIS, NetBIOS, …
● Currently logged in users
● Temporary filesystems (tmpfs)
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Volatile System State - How to get it

● Easy, isn’t it?
– Run ps, lsof, ss, lsmod, uname, date, uptime, …
– And save the results somewhere

● Somewhere?
– Not on the local disk or memory - that would change system state 

(more  then necessary)
– Better: Attached additional storage (e.g. USB-Stick)
– Or save through the network to another machine

● Use netcat, cryptcat, socat, ssh, etc.

● That’s what some live response tools do
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What about Rootkits?

● Their primary purpose is try to hide intruder presence/activity
– Processes, files, network connections, etc.

● User space rootkits
– Replacing system commands or shared libraries
– Injecting malicious code directly into processes

● Kernel space rootkits
– Manipulate Interrupt Table or Interrupt Handler code or System Call 

Table or System Call Code
– Manipulation of kernel data structures

● What about “as little trust as possible in a compromised system”?
– Point is, we cannot trust a compromised system
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How to bypass Rootkits
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● User space
– Use tools from a trustworthy source
– Put them on a CD/DVD or USB-Stick 

with hardware read-only switch
– Statically linked libraries (or add 

clean libraries to medium)

● Kernel space
– Bypass system-call chain as much 

as possible
– Check the kernel-data structures 

carefully for manipulation
– Not perfect, but the best we can do
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Solution
● Access OS data structures directly, bypassing syscalls

 Kernel debugger

● Copy the memory contents and analyse them later on another 
system
 Hardware, DMA through IOMMU

● PCIe cards
● Firewire, Thunderbolt, USB-4 interface

 Software
● Copying from /dev/mem or \\.\Device\PhysicalMemory
● Crash dumps
● Copying virtual machine (VM) memory from the Hypervisor
● Swap/Hibernation partition/file
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Volatility of Traces in RAM

Memory contents of 
terminated processes
(Venema, 2005)

Memory contents of running 
processes
(Chow et. al, Usenix Security 2005)
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Virtual Memory (VM)
● Make it appear as if every process has the 

whole memory for itself
– No need to care about other processes data, 

or the kernel
– Each process (and the kernel too) has one 

large linear address space
– Broken up into chunks, called pages

● Even better, make it appear, as if all of it is 
actually available
– I.e. more memory than physically installed 

RAM 
– Everything not kept in RAM has a copy on disk

● In the filesystem (executables, shared libraries, 
memory mapped files)

● Or swap space (file or partition)

RAM

Disk storage

CPU

Virtual address

Mapping 
(MMU)

Page frames

Page in 
RAM

Page fault 
(not in RAM)

TLB
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Virtual Memory Management (VMM)
● On each memory 

address access, the OS 
needs to
– Translate from virtual 

addresses to physical 
addresses

– Hardware support in 
form of the Memory 
Management Unit 
(MMU)

– Translation Lookaside 
Buffer (TLB): Cache to 
speed up page table 
lookups

Virtual Address 0xffff01020304567

0x01 0x02 0x03 0x567
Level 4 
Index

Level 3 
Index

Level 2 
Index Offset

Unused 0xffff 0x01020304 0x567"Virtual page number" Offset

Level 1 

Directory

Lvl 1 Entry

Level 2 

Directory

Lvl 2 Entry

Level 3 

Directory

Lvl 3 Entry

Level 4 

Directory

Lvl 4 Entry

Physical Page

Physical Address

Unused 0xffff 0x04
Level 1 
Index

Base 

Register
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Impact on Memory Analysis

● When doing the analysis off-line
● Addresses (i.e. pointers) we see in the memory dump are 

virtual addresses
● The offsets into the memory dump file are physical addresses
● During analysis, we have to go back and forth between the two, 

i.e. we have to re-do the MMUs task
● Thankfully, the forensic tool takes care of this
● The page tables will always be present in RAM and thus in 

memory dump
● Otherwise the task would be undoable
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Memory Collection on Linux

● Basic approach
– dd if=/dev/xxx | netcat target-host target-port
– Fails after reading 1 Megabyte under Linux

● Newer (since 2003) Linux/Windows versions do not allow reading 
full kernel memory  from user space

● Need special driver (module) to access memory from kernel space

> grep DEVMEM /boot/config-$(uname -r)

CONFIG_DEVMEM=y # has /dev/mem

CONFIG_ARCH_HAS_DEVMEM_IS_ALLOWED=y

CONFIG_STRICT_DEVMEM=y # restrict access to PCI & BIOS

CONFIG_IO_STRICT_DEVMEM=y # restrict to idle IO regions
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Memory Imaging Process 

1. Preparation

a) Build a profile for volatility or other tool (if needed)

b) Compile the collection tool/kernel module

2. Collection

a) To disk or over the network to a remote systems disk

3. Checking the image

a) Testing the checksum
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Profiles?

● Without additional information, ... 
– We would have no idea what kind of data is at a given address 

● Integer, float, string, structure, … 

– Or what it is used for 
● Process, socket, file, directory, etc.

● What’s needed is the symbol table from the compiler
– Can be used directly for debuggers

● Some forensic tools build more abstract, condensed structures 
from it
– Volatility terminology: Profile
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Linux: Building a Volatility (2.x) Profile

1. Determine kernel version

2. Clone repository

3. Compile

4. Pack

> uname -r 
5.3.18-lp152.47-default

> git clone https://github.com/volatilityfoundation/volatility.git

> cd volatility/tools/linux/
> make

> zip newprofile.zip module.dwarf /boot/System.map-$(uname -r)

Live Demo
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Linux: Building a Volatility 3 Profile

1. Clone repository

2. Compile

3. Generate profile (Linux & Mac OS X only)

> git clone https://github.com/volatilityfoundation/dwarf2json.git

> cd dwarf2json
> go build

> dwarf2json linux --system-map /boot/System.map -$(uname -r) \
  $(uname -r).json

Live Demo



www.geant.orgwww.geant.org21     |

Linux: Compiling the Kernel Module

1. Clone LiME repository

2. Compile

> git clone https://github.com/504ensicsLabs/LiME/

> cd LiME/src
> make clean
> make

Live Demo
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Linux: Collecting the Memory (to disk)

● Raw image

● Image in LiME format

● Compressed image

● Everything together (with checksum)

# insmod lime.ko "path=/tmp/testdump.raw format=raw"

# insmod lime.ko "path=/tmp/testdump.raw format=lime"

# insmod lime.ko "path=/tmp/testdump.raw format=lime compress=1"

# insmod lime.ko "path=/tmp/testdump.raw format=lime compress=1 
digest= sha512"

Live Demo

Remember to not write to local disk, 
use another medium or the network!
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Linux: Collecting the Memory (over the network)

● With netcat 
● On the compromised host

● On the host taking the image

● With ssh & netcat
● From the host taking the image (2nd line on the compromised host)

● On the host taking the image
> netcat localhost 12345 > dumpfile

> ssh -L 12345:localhost:<target port> <compromised host> 
# insmod lime.ko "path=tcp:12345 format=lime"

Live Demo

# insmod lime.ko "path=tcp:12345 format=lime localhostonly=0"

> netcat compromised-host 12345 > dumpfile
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Checking the image

● Cryptographic hash sums are used to assert the chain of custody
– I.e. that the image has not been tampered with (since acquisition)

● Technically
– Use the build-in hash sum features of the collection tool

● Faster, one less thing to forget

– Do not use broken hash algorithms like MD5 or SHA-1
● SHA256 is OK, SHA512 is better

● Organisationally
– 4 eyes principle while collecting the memory
– Store & transfer the checksum apart from the image

● Or tampering becomes trivial

– Even better: Cryptographic signatures, PGP or S/MIME, your choice
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When Checking the Hash Sum ...

● In combination with compression
– Using the build-in checksum feature, the checksum is that of the  

uncompressed image (i.e. before compression)

– Using external tools, the checksum is that of the compressed image 
(i.e. after compression)

> sha512sum /tmp/testdump.lime; cat /tmp/testdump.lime.sha512
d4a0047f88fecc5336fb097670ec9ec3cc4...
19e625b5f013443785af58fa224cfa3a9a3...

> file /tmp/testdump.lime.sha512
/tmp/testdump.lime: zlib compressed data
> unpigz -c /tmp/testdump.lime | sha512sum; cat /tmp/testdump.lime.sha512
19e625b5f013443785af58fa224cfa3a9a3 … 7d6bff60b5bf0 - 
19e625b5f013443785af58fa224cfa3a9a3 … 7d6bff60b5bf0
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Windows: Collecting Memory & Checksum

● Take the image

● Take the checksum
● With certutil (Windows build-in tool)

● With PowerShell

 winpmem_mini_x64_rc2.exe testdump.raw

 certutil -hashfile testdump.raw SHA512

> Get-FileHash -Path y:\testdump.raw -Algorithm SHA512
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Kernel Debugger

● Several facilities for debugging errors in the kernel
– Error message printing (printk) , tracing frameworks (e. g. dtrace), 

debuggers

● Live kernel debugging = Analysis of a running system through an 
attached debugger
– Usually through the serial console (JTAG for embedded systems)
– Network consoles are appearing (Linux kgdboe)

● Linux: kdb and kgdb
● Windows: KD, WinDbg

● Post mortem debugging through crash dumps
– Can also be imported into forensic tools

● E. g. volatility



www.geant.orgwww.geant.org29     |

Crash Dumps

● Advantages
– Dump file can be analysed with debuggers
– Memory state does not change while dump takes place
– Works with practically every operating system

● Disadvantages
– Requires preparation of the OS, i.e. crash dump configuration

● May need to be rebooted for configuration to take effect

– Triggering a crash dump often will trigger a (subsequent) reboot

● Live dumps (or Live debugging) will usually not trigger reboots
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Linux Crash Dump Preparation

● Install kdump and kexec packages - distribution dependant
● Kernel needs several options enabled

– CONFIG_KEXEC=y

– CONFIG_CRASH_DUMP=y

– CONFIG_PROC_VMCORE=y

– CONFIG_SYSFS=y

● Kernel needs to be booted with crashkernel=xxxM option
– xxxM number of megabytes reserved for crash kernel (64 - 256 usually)

● Configuration files /etc/sysconfig/kdump and/or /etc/kdump.conf

● Enable kdump.service (systemctl)
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Linux Crash Dump Execution

● Kernel gets signal to crash and hands over control to the crash 
kernel via kexec mechanism

● Crash kernel then does the actual dumping of the kernel
● Trigger as root (uid == euid!)

● Dump file can be written over the network (SSH or NFS)

echo 1 > /proc/sys/kernel/sysrq
echo c > /proc/sysrq-trigger
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Linux Crash Dump: Live Kernel Dump

● Copy from /proc/kcore
– Copy of the systems memory in ELF format - can be analysed with standard 

debuggers (Gdb)
– Huge (terrabytes), but sparse file
– Need to copy only the occupied pages, see /proc/iomem

● Tools: 
– getkcore from volatility toolkit (tools/linux/kcore)
– kcore_dump from “schlafwandler” 

● Version that is supposed to work with KASLR for kernel version > 4.8
● Very little testing, production ready?

● Don’t forget debugging symbols!
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Windows 10 Crash Dump: Enable Dump

● Memory Dump Settings (GUI)
– Control Panel → System and 

Security → System

– Advanced system settings → 
Advanced

– Startup and Recovery → 
Settings

– Select Kernel memory dump or 
Complete memory dump under 
Writing Debugging Information

– Reboot

● CLI
wmic recoveros set DebugInfoType=1
wmic recoveros set DebugFilePath=PATH\TO\DUMP
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Windows 10 Crash Dump: Setting Keyboard Sequence

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\i8042prt\Parameters
Key CrashOnCtrlScroll, Value (DWORD) 0x01      # PS2 keyboards

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\kbdhid\Parameters
Key CrashOnCtrlScroll, Value (DWORD) 0x01      # USB keyboards

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\hyperkbd\Parameters
Key CrashOnCtrlScroll, Value (DWORD) 0x01      # Hyper-V keyboards

● To prepare for initiating a crash dump from the keyboard
– Create one of the following registry keys
– Depending on your keyboard type
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Windows 10 Crashdump Execution

● From keyboard (when prepared)
– Press right CTRL key (and hold down) while pressing SCROLL 

LOCK twice
– To change the key: 

● https://docs.microsoft.com/en-us/windows-hardware/
drivers/debugger/forcing-a-system-crash-from-the-
keyboard

● Alternatively, use the Sysinternals NotMyFault Tool
– Part of Sysinternals Suite

notMyfault64c.exe /crash reason
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Windows 10 Live Kernel Dump

● Install Windows debugging tools (e.g. from SDK or other source)
● Install LiveKD from Sysinternals

 LiveKD.exe
0: kd> .dump /f c:\path\to/dump.dmp
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Memory Forensic Tool Quality Criteria
● Operating system & Hardware architecture support
● How well does the tool work in adversarial conditions?

– Rootkits/Anti-Forensics, DRM/Copy-protection SW, faulty memory, etc.
– Past bugs/vulnerabilities

● GUI, CLI, stand-alone, etc.
● Image file support

– File types (raw, LiME, etc.)
– Compression, splitting image over multiple files, …
– Writing over network (raw, HTTPs)

● Memory footprint?

● Time to capture the memory image? (GiB/s)
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What have you learned? 

● There are many way to get to a systems main memory
● Most require some preparation

– Some even installing hardware beforehand

● Kernel debugging is hard, although very powerful
– However, requires a lot of knowledge & expertise

● Collecting memory through a special kernel module/driver
– Most generic, with regards to requirements
– Preparation (i.e. profile building) can be done offline

● Crash dumps can be an alternative
● More coming up: VM hosts, Swap, Hibernation, ... 
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Any questions?

Next Webinar: Memory Acquisition II

December 14th, 2021
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