Beyond Detection: Al's Potential For Supporting Threat Hunters

robin@corelight.com

Robin Sommer

Corelight, Inc.

Co-Founder

About me

COMPUTER SCIENCE INSTITUTE

An Open Source Network Security **Monitoring Tool**

Zeek (formerly Bro) is the world's leading platform for network security monitoring.

Flexible, open source, and powered by defenders.

ZEEK AND YE SHALL FIND

ZZEEK

Get Zeek

www.zeek.org

 \bigcirc

corelight

We transform network activity into evidence so that data-first defenders can stay ahead of everchanging attacks.

PRODUCT

CUSTOMERS FUNDING PEOPLE

In 2013 in Berkeley, CA

- San Francisco, CA (HQ); Columbus, OH;
- London, UK; Sydney, Australia; Dubai, UAE

Open Network Detection and Response (NDR) platform for visibility, incident response, and threat hunting

Fortune 500, critical infrastructure, national security, R&D

Series A/B/C/D (incl. Accel, Insight, Crowdstrike)

~300

Remember SolarWinds in 2020?

FireEye, a Top Cybersecurity Firm, Says It Was Hacked by a Nation-State

The Silicon Valley company said hackers — almost certainly Russian — made off with tools that could be used to mount new attacks around the world.

The New York Times

SolarWinds hack may be much worse than originally feared

Some 250 government agencies and businesses may have been affected The Washington Post

PRO CYBER NEWS

SolarWinds Hack Forces Reckoning With Supply-Chain Security

Companies are re-evaluating how they vet vendors and pausing software updates

National Security

Russian government hackers are behind a broad espionage campaign that has compromised U.S. agencies, including Treasury and Commerce

The Washington Post

SolarWinds hackers accessed Microsoft source code, the company says

THE WALL STREET JOURNAL.

National Security

The U.S. government spent billions on a system for detecting hacks. The Russians outsmarted it.

Why then, when computer networks at the State Department and other federal agencies started signaling to Russian servers, did nobody in the U.S. government notice that something odd was afoot?

The hackers also shrewdly used novel bits of malicious code that apparently evaded the U.S. government's multibillion-dollar detection system, <u>Einstein</u>, which focuses on finding new uses of known malware and also detecting connections to parts of the Internet used in previous hacks.

But Einstein, operated by the Department of Homeland Security's Cybersecurity and Infrastructure Security Agency (CISA), was not equipped to find novel malware or Internet connections, despite a <u>2018 report</u> from the Government Accountability Office suggesting that building such capability might be a wise investment. Some private cybersecurity firms do this type of "hunting" for suspicious communications — maybe an IP address to which a server has never before connected — but Einstein doesn't.

[...]

[...]

[...]

The Washington Post

National Security

The U.S. government spent billions on a system for detecting hacks. The Russians outsmarted it.

Why then, when computer networks at the State Department and other federal agencies started signaling to Russian servers, did nobody in the U.S. government notice that something odd was afoot?

The hackers also shrewdly used novel bits of malicious code that apparently evaded the U.S. government's multibillion-dollar detection system, <u>Einstein</u>, which focuses on finding new uses of known malware and also detecting connections to parts of the Internet used in previous hacks.

But Einstein, operated by the Department of Homeland Security's Cybersecurity and Infrastructure Security Agency (CISA), was not equipped to find novel malware or Internet connections, despite a <u>2018 report</u> from the Government Accountability Office suggesting that building such capability might be a wise investment. Some private cybersecurity firms do this type of "hunting" for suspicious communications — maybe an IP address to which a server has never before connected — but Einstein doesn't.

[...]

[...]

[...]

The Washington Post

National Security

The U.S. government spent billions on a system for detecting hacks. The Russians outsmarted it.

Why then, when computer networks at the State Department and other federal agencies started signaling to Russian servers, did nobody in the U.S. government notice that something odd was afoot?

The hackers also shrewdly used novel bits of malicious code that apparently evaded the U.S. government's multibillion-dollar detection system, <u>Einstein</u>, which focuses on finding new uses of known malware and also detecting connections to parts of the Internet used in previous hacks.

But Einstein, operated by the Department of Homeland Security's Cybersecurity and Infrastructure Security Agency (CISA), was not equipped to find novel malware or Internet connections, despite a 2018 report from the Government Accountability Office suggesting that building such capability might be a wise investment. Some private cybersecurity firms do this type of "hunting" for suspicious communications — maybe an IP address to which a server has never before connected — but Einstein doesn't.

[...]

[...]

[...]

National Security

The U.S. government spent billions on a system for detecting hacks. The Russians outsmarted it.

Why then, when computer networks at the State Department and other federal agencies started signaling to Russian servers, did nobody in the U.S. government notice that something odd was afoot?

Why can we still not detect this, even at such scale?

But Einstein, operated by the Department of Homeland Security's Cybersecurity and Infrastructure Security Agency (CISA), was not equipped to find novel malware or Internet connections, despite a 2018 report from the Government Accountability Office suggesting that building such capability might be a wise investment. Some private cybersecurity firms do this type of "hunting" for suspicious communications — maybe an IP address to which a server has never before connected — but Einstein doesn't.

[...]

[...]

[...]

1. Classic intrusion detection with machine learning

2. From intrusion detection to threat hunting

3. Beyond detection: A new role for Al

Classic Intrusion Detection

How can we detect (novel) attacks?

Misuse Detection

(using signatures)

Look for know attacks that we can describe

Misuse Detection

(using signatures)

Anomaly Detection (using machine learning)

Look for know attacks that we can describe

Look for activity that's "not normal"

Misuse Detection

(using signatures)

Anomaly Detection (using machine learning)

Look for know attacks that we can describe

Look for activity that's "not normal"

This is the Holy Grail of intrusion detection ...

Two degrees of freedom

- Input Decide on features
- ML Select classifier

Two degrees of freedom

Input Decide on features

ML Select classifier

Network features used

- packet sizes
- IP addresses
- ports
- header fields
- timestamps
- inter-arrival times
- session size
- session duration
- session volume
- payload frequencies
- payload tokens
- payload pattern

. . .

Two degrees of freedom

- Input Decide on features
- ML Select classifier

Network features used

- packet sizes
- IP addresses
- ports
- header fields
- timestamps
- inter-arrival times
- session size
- session duration
- session volume
- payload frequencies
- payload tokens
- payload pattern

. . .

Technique Statistical using Histe

Parametri cal Modeli Non-paran tistical Mo Bayesian I

Neural Ne

Support V chines Rule-based

Clustering

Nearest based Spectral

Informatic retic

e Used	Section	References
Profiling	Section 7.2.1	NIDES [Anderson et al. 1994; Anderson et al. 1995;
ograms		Javitz and Valdes 1991], EMERALD [Porras and
		Neumann 1997], Yamanishi et al $[2001; 2004]$, Ho
		et al. [1999], Kruegel at al [2002; 2003], Mahoney
		et al $[2002; 2003; 2003; 2007]$, Sargor $[1998]$
c Statisti-	Section 7.1	Gwadera et al $[2005b; 2004]$, Ye and Chen $[2001]$
ing		
metric Sta-	Section $7.2.2$	Chow and Yeung [2002]
odeling		
Networks	Section 4.2	Siaterlis and Maglaris [2004], Sebyala et al. [2002],
	0 1 1	Valdes and Skinner [2000], Bronstein et al. [2001]
etworks	Section 4.1	HIDE [Zhang et al. 2001], NSOM [Labib and Ve-
		muri 2002], Smith et al. $[2002]$, Hawkins et al.
		[2002], Kruegel et al. [2003], Manikopoulos and Pa-
Vooton Ma	Section 12	[2002], Ramadas et al. $[2003]$
vector ma-	Section 4.5	ESKIII et al. [2002]
d Systems	Section 4.4	ADAM [Barbara et al. 2001a: Barbara et al. 2003.
a systems		Barbara et al. 2001bl. Fan et al. [2001]. Helmer
		et al. [1998]. Qin and Hwang [2004]. Salvador and
		Chan [2003], Otev et al. [2003]
g Based	Section 6	ADMIT [Sequeira and Zaki 2002], Eskin et al.
		[2002], Wu and Zhang [2003], Otey et al. [2003]
Neighbor	Section 5	MINDS [Ertoz et al. 2004; Chandola et al. 2006],
		Eskin et al. $[2002]$
	Section 9	Shyu et al. [2003], Lakhina et al. [2005], Thottan
		and Ji [2003],Sun et al. [2007]
on Theo-	Section 8	Lee and Xiang [2001],Noble and Cook [2003]

e Used	Section	References
Profiling	Sectio	The son et al. 1994; Anderson et al. 1995;
ograms	No	Ne of this really work
ic Statisti- ing	Section 7.1	Gwadera et al [2005b; 2004], Ye and Unum $ [-$
metric Sta- odeling	Section 7.2.2	Chest and Yeung [2002]
Networks	Section 4.2	Siaterlis and Maglaris [2004], Sebyala et al. [2002], Valdes and Skinner [2000], Bronstein et al. [2001]
etworks	Section 4.1	HIDE [Zhang et al. 2001], NSOM [Labib and Ve- muri 2002], Smith et al. [2002], Hawkins et al. [2002], Kruegel et al. [2003], Manikopoulos and Pa- pavassiliou [2002], Ramadas et al. [2003]
Vector Ma-	Section 4.3	Eskin et al. [2002]
d Systems	Section 4.4	ADAM [Barbara et al. 2001a; Barbara et al. 2003; Barbara et al. 2001b], Fan et al. [2001], Helmer et al. [1998], Qin and Hwang [2004], Salvador and Chan [2003], Otey et al. [2003]
g Based	Section 6	ADMIT [Sequeira and Zaki 2002], Eskin et al. [2002], Wu and Zhang [2003], Otey et al. [2003]
Neighbor	Section 5	MINDS [Ertoz et al. 2004; Chandola et al. 2006], Eskin et al. [2002]
	Section 9	Shyu et al. $[2003]$, Lakhina et al. $[2005]$, Thottan and Ji $[2003]$, Sun et al. $[2007]$
on Theo-	Section 8	Lee and Xiang [2001],Noble and Cook [2003]

e Used	Section	References
Profiling	Sectio	The son et al. 1994; Anderson et al. 1995;
ograms	No	ne of thic porras and
c Statisti- ing	Section 7.1	et al [2002; 2000, WOrk Gwadera et al [2005b; 2004], Ye and Onon
netric Sta- odeling	Section 7.2.2	Chord and Yeung [2002]
Networks	Section 1.2	Siaterlis and Maglaris [2004], Sebyala et al. [2002], Valdes and Skinner [2000], Bronstein et al. [2001]
etworks	Section 4.1	HIDE [Zhang et al. 2001], NSOM [Labib and Ve- muri 2002], Smith et al. [2002], Hawkins et al. [2002], Kruegel et al. [2003], Manikopoulos and Pa- pavassiliou [2002], Ramadas et al. [2003]
Vector Ma-	Section 4.3	Eskin et al. $[2002]$
d Systems	Section 4.4	ADAM [Barbara et al. 2001a; Barbara et al. 2003; Barbara et al. 2001b], Fan et al. [2001], Helmer et al. [1998], Qin and Hwang [2004], Salvador and Chan [2003], Otey et al. [2003]
g Based	Section 6	ADMIT [Sequeira and Zaki 2002], Eskin et al.
Neighbor	Section 5	$\begin{bmatrix} 2002 \end{bmatrix}, \text{ wu and Zhang [2003], Otey et al. [2003]}\\ \text{MINDS [Ertoz et al. 2004; Chandola et al. 2006],}\\ \text{Eskin et al. [2002]} \end{bmatrix}$
	Section 9	Shyu et al. [2003], Lakhina et al. [2005], Thottan

Why is machine learning so ineffective in this domain?

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Feature Y

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Feature Y

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Feature Y

С

Feature X

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Feature Y

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Feature Y

Feature X

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Feature Y

Feature X

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Feature Y

Classification Problems

Feature X

Machine Translation

Optical Character Recognition

Product Recommendations

Spam Detection

Classification Problems

Feature Y

Trained with specimen of all categories -> Very robust even at scale

Feature Y

Training with the opposite we're looking for -> No margin for errors

Feature X

Why is machine learning so ineffective in this domain?

Machine learning isn't good at finding outliers

- In other domains, one looks for activity that's similar to what's been trained with

Why is machine learning so ineffective in this domain?

Machine learning isn't good at finding outliers

No stable notion of normality

- In other domains, one looks for activity that's similar to what's been trained with

Network environments exhibit enormous variability & noise; "not yet seen" is normal

Why is machine learning so ineffective in this domain?

Machine learning isn't good at finding outliers

No stable notion of normality

Semantic gap Features do not tie back to operational semantics

- In other domains, one looks for activity that's similar to what's been trained with

Network environments exhibit enormous variability & noise; "not yet seen" is normal

Why is machine learning so ineffective in this domain?

Machine learning isn't good at finding outliers

No stable notion of normality

Semantic gap Features do not tie back to operational semantics

High cost of errors There are "too few attacks" \rightarrow base rate fallacy

- In other domains, one looks for activity that's similar to what's been trained with

Network environments exhibit enormous variability & noise; "not yet seen" is normal

Activity known to remain quite stable

Service availability

SSL certificates

Executables on a server

Activity known to remain quite stable

Service availability

SSL certificates

Executables on a server

Individual features with characteristic distributions

URL parameters

DNS lookups

Communication timing (e.g., interactive logins)

Activity known to remain quite stable

Service availability

SSL certificates

Executables on a server

Individual features with characteristic distributions

URL parameters

DNS lookups

Communication timing (e.g., interactive logins)

Variations of known attacks

Pre-canned attack tools

Phishing emails

So, why is detecting novel attacks so difficult?

We're limited to finding what we can describe, one way or the other.

So, why is detecting novel attacks so difficult?

We're limited to finding what we can describe, one way or the other.

Misuse Detection

Anomaly Detection

By definition: We need a library of attacks

Need to target something we understand

So, why is detecting novel attacks so difficult?

We're limited to finding what we can describe, one way or the other.

Misuse Detection

Anomaly Detection

By definition: We need a library of attacks

Need to target something we understand

Corollary: The more sophisticated the attacker, the less likely we'll be detecting what they are doing.

From Intrusion Detection to Threat Hunting

When are attackers found

L		\frown			
П					
ш					
Ш					
П					
Įι					
L					

Dwell time is calculated as the number of days an attacker is present in a victim environment before they are detected. The median represents a value at the midpoint of a data set sorted by magnitude.

16	2017	2018	2019	2020	2021	2022
9	101	78	56	24	21	16

Source: Mandiant M-Trends® 2023

17

When are attackers found

1		\frown
П		
П		
П		
П		
ΙL		
L		
	. L	_

Dwell time is calculated as the number of days an attacker is present in a victim environment before they are detected. The median represents a value at the midpoint of a data set sorted by magnitude.

16	2017	2018	2019	2020	2021	2022	
9	101	78	56	24	21	16	

Source: Mandiant M-Trends[®] 2023

As a defender you might just as well assume somebody is in your network already.

"Threat hunting is the practice of proactively searching for cyber threats that are lurking undetected in a network. Cyber threat hunting digs deep to find malicious actors in your environment that have slipped past your initial [...] security defenses."

Crowdstrike (2023)

"Threat hunting is the practice of proactively searching for cyber threats that are lurking undetected in a network. Cyber threat hunting digs deep to find malicious actors in your environment that have slipped past your initial [...] security defenses."

"Threat hunters are incident responders and forensic investigators actively looking for new threats before traditional intrusion detection methods can find them."

Crowdstrike (2023)

Bob Lee, SANS (2016)

"Threat hunting is the practice of proactively searching for cyber threats that are lurking undetected in a network. Cyber threat hunting digs deep to find malicious actors in your environment that have slipped past your initial [...] security defenses."

"Threat hunters are incident responders and forensic investigators actively looking for new threats before traditional intrusion detection methods can find them."

"Defenders must actively hunt intruders in their enterprise. [...] Rather than hoping defenses will repel invaders, or that breaches will be caught by passive alerting mechanisms, [...] defeating intruders requires actively detecting and responding to them.

Richard Bejtlich,"Become a Hunter", Information Security Magazine (2011)

Crowdstrike (2023)

Bob Lee, SANS (2016)

18

"Threat hunting is the practice of proactively searching for cyber threats that are lurking undetected in a network. Cyber threat hunting digs deep to find malicious actors in your environment that have slipped past your initial [...] security defenses."

"Threat hunters are incident responders and forensic investigators actively looking for new threats before traditional intrusion detection methods can find them."

"Defenders must actively hunt intruders in their enterprise. [...] Rather than hoping defenses will repel invaders, or that breaches will be caught by passive alerting mechanisms, [...] defeating intruders requires actively detecting and responding to them.

Richard Bejtlich,"Become a Hunter", Information Security Magazine (2011)

Crowdstrike (2023)

Bob Lee, SANS (2016)

18

Why wasn't this detected earlier?

National Security

The U.S. government spent billions on a system for detecting hacks. The Russians outsmarted it.

Why then, when computer networks at the State Department and other federal agencies started signaling to Russian servers, did nobody in the U.S. government notice that something odd was afoot?

The hackers also shrewdly used novel bits of malicious code that apparently evaded the U.S. government's multibillion-dollar detection system, <u>Einstein</u>, which focuses on finding new uses of known malware and also detecting connections to parts of the Internet used in previous hacks.

But Einstein, operated by the Department of Homeland Security's Cybersecurity and Infrastructure Security Agency (CISA), was not equipped to find novel malware or Internet connections, despite a 2018 report from the Government Accountability Office suggesting that building such capability might be a wise investment. Some private cybersecurity firms do this type of "hunting" for suspicious communications — maybe an IP address to which a server has never before connected — but Einstein doesn't.

[...]

[...]

[...]

Why wasn't this detected earlier?

National Security

The U.S. government spent billions on a system for detecting hacks. The Russians outsmarted it.

Why then, when computer networks at the State Department and other federal agencies started signaling to Russian servers, did nobody in the U.S. government notice that something odd was afoot?

The hackers also shrewdly used novel bits of malicious code that apparently evaded the U.S. government's multibillion-dollar detection system, <u>Einstein</u>, which focuses on finding new uses of known malware and also detecting connections to parts of the Internet used in previous hacks.

But Einstein, operated by the Department of Homeland Security's Cybersecurity and Infrastructure Security Agency (CISA), was not equipped to find novel malware or Internet connections, despite a 2018 report from the Government Accountability Office suggesting that building such capability might be a wise investment. Some private cybersecurity firms do this type of "hunting" for suspicious communications — maybe an IP address to which a server has never before connected — but Einstein doesn't.

[...]

[...]

[...]

Create visibility

Create visibility

Batch —

Endp	point	
Windows Event logs Memory File table Registry	Process metadata EDR telemetry Windows Event logs	
	Source: Vector8	- Real-time
PCAP Netflow Network device logs Application logs	IDS Deep Packet Inspection Network connections DNS requests	
Netv	work	

Create visibility

Batch

Create visibility

splunk>	enterprise	App: Searc.		i	Administrator -
Search	Analytics	Datasets	Reports	Alerts	Dashboards
New S	Search				
sourcety dedup table	pe=http user_ user_agent user_agent	_agent="Solar	WindsOrionI	mproveme	ntClient/*"
✓ 2 events	6 (before 12/19/	20 8:04:59.00	0 PM) No	Event Sa	mpling 🔻
Events	Patterns	Statistics (2)	Visualiza	ntion	
100 Per Pa	age 🔻 🖌 Fo	ormat Prev	view 🕶 🗸		
user_agen	it ≑				
SolarWind	sOrionImprove	mentClient/2	.2.332.0		

splunk>	enterprise	App: Searc	•	i	Administrator -
Search	Analytics	Datasets	Reports	Alerts	Dashboards
New S	Search				
sourcety dedup table	pe=http user user_agent user_agent	_agent="SolarW	indsOrio	nImproveme	ntClient/*"
✓ 2 events	6 (before 12/19/	20 8:04:59.000	PM)	lo Event Sa	mpling 🔻
Events	Patterns	Statistics (2)	Visuali	zation	
100 Per Pa	age 🔻 🖌 Fo	ormat Previ	ew 🔻		
user_agen	t ≑				
SolarWind	sOrionImprove	ementClient/2.	2.332.0		

Which IP did that box reach out to last week? How many people received that email? Who opened the suspicious attachment? What DNS requests did the system issue? When did we first see that CoC traffic? Which systems did the person access? Which services do normally run on a system? Was the session encrypted? What's the server name of that HTTPS endpoint? Did the certificate check out ok? Did they try to connect to our LDAP server? Has somebody modified the file?

Create visibility

Create visibility

Let security team actively search for threats

Create visibility

Let security team actively search for threats

Common types of "hunts"

- Hypothesis: "What if an attacker wanted to do *that*"?
- Trigger: "Something's fishy ..."
- Retrospective: "Where we hit by the same as FireEye"?

Classic IDS deployment

Classic IDS deployment

Opportunity: Deploy AI to support the human analysts.

Beyond detection: A New Role for Al

Support the hunters

Narrow classifiers as triggers

Activity known to remain quite stable

Service availability

SSL certificates

Executables on a server

Individual features with characteristic distributions

URL parameters

DNS lookups

Communication timing (e.g., interactive logins)

Variations of known attacks

Pre-canned attack tools

Phishing emails

FOR				
Alerts	 Domain Typosquatting Domain Typosquatting Machine Learning 			
Tac Info	tic: Domain Typosquatting b: Adversaries rely on errors made by Internet users when t	syping a website address to deliver malv	ware, to redirect	to a malicious site, to co
ENT	TITY SUMMARY		ENTITY DETAI	LS
o	Search		← Back to	Alert Details
G	facebo0k.com 16 Jan 15:31 - 30 Jan 12:37	× 232	Timestamp:	2023-01-30T12:37:00-08
G	googlr.com 17 Jan 02:40 - 29 Jan 20:50	x 61	TOP FEATUR	E CONTRIBUTION
G	fcaebook.com 16 Jan 17:40 - 30 Jan 07:51	× 56	• 55%	Probability of being
G	goolge.com 18 Jan 00:41 - 30 Jan 12:51	x 51	<mark>\$</mark> 15%	Digit ratio of the sec
G	goog1e.com 16 Jan 14:31 - 17 Jan 15:31	x 15	• 11%	Alexa rank
G	facevbook.com 16 Jan 15:40 - 17 Jan 14:41	× 7	• 8% • 3%	Frequency of the top Vowel ratio of the se
G	facebok.com 16 Jan 14:40 - 17 Jan 15:41	x 6	• 3%	Consonant ratio of th
	googlee.com	× 5	• 3%	Consonant to vowel
	16 Jan 15:40 - 17 Jan 16:41		• 3%	Hyphen ratio of of th
G	D feacebook.com 16 Jan 20:40 - 17 Jan 14:41	x 5	• 0%	Length of the second

Example: Typo squatting

26
Generative AI: Guiding the analyst

- Lower the bar for effective threat hunting
- Leverage expertise of more advanced organizations

Generative AI: Guiding the analyst

Threat hunting questions

What does this trigger mean? Where can I find out more about this? How likely is this malicious? How to confirm? Is my host normally be doing *that*? What entities I should I focus on? What hunts are my peers doing these days?

Lower the bar for effective threat hunting Leverage expertise of more advanced organizations

Incident response & triage

- How bad is it?
- What are the next steps now?
- What do I need to do to clean up? How do find this next time? Write report: findings, impact, mitigation

=	C corelight INVESTIGATOR		2.		
0	IETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin 10.2				
6	Close Detection 🔉 Suppress Entity 🕒 Assign To 🤉 Investigate Logs			Ō	
	Detection Details 418 Alerts 1 Related Detections 0 Related Entities				
86					
3	Description	Detection Sur	mmary	^	
		Status	Closed		
	Generated from AI		Unassigned	~	
	from any source within the network to an external destination. The rule specifically looks for a request that starts with "POST / HTTP/1.0" and contains the header	Number of Alerts	418		
	"Host:", followed by "Mozilla/4.0 (compatible; Synapse)" as the user agent. It then checks for the presence of "id=" at the beginning of the request body, followed by	First Alert	August 8th 4.27am		
	"&data=" within a distance of 32 characters, and "&act=" not appearing within the first 5 characters relative to the position of "&data=". The rule also includes a	Time	August Oth, F.O.Com		
	reference to the MD5 hash "23a45a5658dc1989c54f5bd9139c007a" and provides	Last Alert Time	August 8th, 7:23am		
	performance impact, severity, and update date. The rule is classified as "command- Source and lightrol" with a group ID of 1 and a signature ID of 2842772.	Entity		^	
		Entity	♦ 10.2	🔉 Suppress	
	Ask GPT	Entity Type	IP		
		Alart Catato			
	What might this alert mean?	Alert Categor	y	^	
	What are some possible next steps to investigate this alert?	Alert Category	ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Ch	leckin	

Ask GPT

0

٢

.....

.

(9)

What might this alert mean?

The suricata alert you received indicates a potential malware activity related to t AutoIT/Trojan.Injector.Autoit.F variant. The alert specifies that a POST request is being made from your home network (HOME_NET) to an external network (EXTERNAL_NET). The request is using HTTP version 1.0 and includes a specific User-Agent header indicating compatibility with "Mozilla/4.0 (compatible, Synap The request body contains parameters starting with "id=", followed by "&data=" "&act=".

This particular rule has been assigned a reference MD5 hash value and various metadata including the attack target (Client_Endpoint), creation date (2020_05_ deployment (Perimeter), former category (MALWARE), performance impact (Low signature severity (Major), and update date (2022_04_18). The classification typ identified as "command-and-control" and the rule is associated with the group I and the unique security identifier (SID) 2842772, with a revision of 1.

Overall, this alert indicates a suspicious network communication that matches the characteristics of the AutoIT/Trojan.Injector.Autoit.F malware, potentially sugge a command-and-control activity originating from your network.

What might this alert mean?

What are some possible next steps to investigate this alert?

		.
^	Entity Type	IP
	Alert Categor	У
ed to the	Alert Category	ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin
uest is	Severity	6
pecific Synapse)".	Туре	Suricata
lata=" and		
rious 20_05_28),		
ct (Low), ion type is		
roup ID 1		
ches the		
suggesting		
Alert Category		~
Alert Category ETF	PRO MALWARE AutoIT/Trojar	n.Injector.Autoit.F Checkin

C corelight INVESTIGATOR

10012042112.

🔳 Ask GPT

What are some possible next steps to investigate this alert?

To investigate the Suricata alert "ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin," a Cyber Analyst can utilize various Zeek logs to gather additional information. The following Zeek logs are rele this investigation:

- 1. http.log: This log captures HTTP traffic and contains details such as client IP, server IP, timestamps method, URI, host, user-agent, and more. It can provide information about the request made durin trigger.
- 2. files.log: This log records file-related activities, including file transfers. It can help identify any pote malicious files involved in the alert.
- 3. conn.log: This log provides information about network connections, including source and destination addresses, ports, timestamps, connection duration, and flags. It can assist in understanding the ne flow associated with the alert.

When investigating the Suricata alert using Zeek logs, the following steps can be followed:

- 1. Identify the alert in Suricata: Note the time, source IP address, destination IP address, and any oth relevant details from the alert.
- 2. Search the conn.log: Look for connections involving the source IP address and destination IP address

what might this atert mean:

What are some possible next steps to investigate this alert?

PROPERTY.

Entity Type IP Entity Entity Entity Entity Entity ID Alert Category Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin Severity 6 Type Suricata			
Entity Type IP Entity Entity 10.2 Entity 10.2 Entity 10.2 Entity Type IP Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin Severity 6 Type Suricata antially an IP twork er ss quest More			2.
Entity Entity \diamond 10.2 Entity Type IP Alert Category Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin Severity 6 Type Suricata		Entity Type	IP
Entity \$ 10.2 Entity Type IP Alert Category Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin Severity 6 Type Suricata an IP twork er ess quest More		Entity	
Entity Type IP Alert Category Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin Severity 6 Type Suricata on IP twork er ss quest More		Entity	
Security want for a, HTTP g the alert g the alert Severity 6 Type Suricata and the severity in the severity	Ŷ	Entity Type	IP
Alert Category Alert Category Alert Category Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin Severity Type Suricata runnov	Conveitu		
Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin Severity 6 Type Suricata	evant for	Alert Categor	Ŋ
g the alert Severity on IP twork er ess quest More	5, HTTP	Alert Category	ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin
Implication Type Suricata eer ess quest More	g the alert	Severity	6
er ess quest More	ntially	Туре	Suricata
er Iss quest More	on IP stwork		
er ess quest More			
quest More	er		
quest More	ess		
deer unde	quest More		
arcPoll			

Alert Category ETPRO MALWARE AutoIT/Trojan.Injector.Autoit.F Checkin

No surprise: Many such Al solutions emerging

No surprise: Many such Al solutions emerging

Charlotte

2023-05-27 09:	:23:05		💼 Delete	🗘 Regenerate 🛛 🔨
Yes, Microso	ft Outlook has 3 critical vulne	erabilities across 231 devices		
CVE ID	Description	Exploit status	Hosts	Remediations
CVE-2017-11774	Microsoft Outlook 2010 SP2, Outlook	2013 SP1 and _ Actively used (critical)	231	
CVE-2023-23397	Microsoft Outlook Elevation of Privile	ege Vulnerabili • Actively used (critical)	231	
CVE-2010-0266	Microsoft Office Outlook 2002 SP3, 2	2003 SP3, and Actively used (critical)	1	1
ontinue the con	versation			Send

ind	lows hosts.		☆ S	ave
		💼 Delete	💭 Regenerate	^
Lat	eral Movement	was observed.		
	Host		Timeline	
8	Hostname	SE-ILO-WIN (+1 host)	Start	Mar
5	Operating system	Windows 10	Last activity	Mar
3	External IP address	193.29.61.177	Duration	
5	Local IP address	172.17.0.26		•
				Send

Hey Charlotte, which threat actors target us?

2023-05-26 11:16:01

Detections have been observed in your environment was observed in May 2023.

LABYRINTH CHOLLIMA, FANCY BEAR, WIZARD SP PINCHY SPIDER have also been observed in the pas

Last active

May 2023

Intel reports

Community identifiers LockBit, LockBitSupp, St

		☆ Save
	🖬 Delete 📿 Reg	generate ^
t attributed to 6 Acto	rs. Most recently BITW	ISE SPIDER
IDER, BERSERK BEA	AR,	
See more about BITWISE	SPIDER [2	
Status	Origin	
Active	Unknown	
Target industries	Target countries	
35	74	
Motivation		
Criminal		
ealBit		
		Source: Crowd

C corelight

How to threat hunt with Open NDR + MITRE ATT&CK[®]

Archive Collected Data Automated Collection Automated Exfiltration BITS Jobs Brute Force Command Line Interface PowerShell Commonly Used Ports/Non-Standard Ports Data from Network Shared Drive Data Transfer Size Limits Drive-By Compromise Encrypted Channel External Remote Services Fallback Channels, Multi-Stage Channels Forced Authentication Ingress Tool Transfer Install Root Certificate Network Sniffing Network Service Scanning Network Share Discovery Non-Application Layer Protocol Non-Standard Ports Port Knocking Proxy Remote Desktop Protocol Remote Services Remote System Discovery Server Software Component: Web Shell Spearphishing Attachment Spearphishing Link Web Service Windows Admin Shares

Source: Corelight

C corelight

How to threat hunt with Open NDR + MITRE ATT&CK[®]

Archive Collected Data Automated Collection Automated Exfiltration BITS Jobs Brute Force Command Line Interface PowerShell Commonly Used Ports/Non-Standard Ports Data from Network Shared Drive Data Transfer Size Limits Drive-By Compromise Encrypted Channel External Remote Services Fallback Channels, Multi-Stage Channels Forced Authentication Ingress Tool Transfer Install Root Certificate Network Sniffing Network Service Scanning Network Share Discovery Non-Application Layer Protocol Non-Standard Ports Port Knocking Proxy Remote Desktop Protocol Remote Services Remote System Discovery Server Software Component: Web Shell Spearphishing Attachment Spearphishing Link Web Service Windows Admin Shares

Source: Corelight

EXFILTRATION

Automated Exfiltration

If an attacker is using an automated means of exfiltration, data artifacts are captured in the Corelight data.

To look for exfiltration in your network, you can use the Zeek package developed to calculate Producer/Consumer Ratio (PCR). PCR values indicate whether flows are consumptive (download) versus productive (upload). PCR values range from -1 (consumptive) to +1 (productive). To hunt for exfiltration using this package:

- 1. Install and enable the PCR package.
- 2. Generate a table of id.orig_h, id.resp_h, id.resp_p, and pcr from the conn log.
- 3. Use local_orig is false or local_resp is true to filter the results.
- 4. Reduce the results by filtering where pcr <= 0.
- 5. For each host generating flows where pcr >= 0, consider whether that host is expected to transmit data, inside or outside the network.

Another option is to use a SIEM to calculate the PCR using the information available in the Corelight conn log. The following query creates a table organized by host that contains the originating and responding bytes and a PCR value.

index=corelight sourcetype=corelight_conn | stats sum(orig_bytes) as Total_orig_bytes, sum(resp_bytes) as Total_resp_ bytes by id.orig_h id.resp_h | eval PCR=(Total_orig_bytes-Total_resp_bytes)/(Total_orig_bytes+Total_resp_bytes) | fields id.orig_h id.resp_h Total_orig_bytes Total_resp_bytes PCR

Data Transfer Size Limits

An attacker may attempt to transfer data or files by "chunking" them into smaller pieces, to avoid hard-coded data transfer limits or thresholds. We will present two methods to hunt for this technique.

The first method analyzes data leaving the network based on source and destination pairs and requires a data aggregation/visualization platform (unless you enjoy AWKing and GREPing through data):

- 1. Generate a table from the conn log including the id.orig_h, id.resp_h, id.resp_p, and sum(orig_bytes).
- 2. Sort the results by the largest sum (orig_bytes).
- 3. Examine each host and determine if there is a legitimate reason for uploads to that destination.

The second method analyzes the frequency, and sizes, of outbound transfers from each source:

- 1. Generate a table from the conn log including id.orig_h, id.resp_h, id.resp_p, and count(orig_bytes).
- 2. Sort the results by the largest count(orig_bytes).
- 3. Examine the results and determine the reason for all the connections with the same amount of data flowing from the source to the destination.

C corelight

THREAT HUNTING GUIDE

How to threat hunt with Open NDR + MITRE ATT&CK[®]

Archive Collected Data Automated Collection Automated Exfiltration BITS Jobs Brute Force Command Line Interface PowerShell Commonly Used Ports/Non-Standard Ports Data from Network Shared Drive Data Transfer Size Limits Drive-By Compromise Encrypted Channel External Remote Services Fallback Channels, Multi-Stage Channels Forced Authentication Ingress Tool Transfer Install Root Certificate Network Sniffing Network Service Scanning Network Share Discovery Non-Application Layer Protocol Non-Standard Ports Port Knocking Proxy Remote Desktop Protocol Remote Services Remote System Discovery Server Software Component: Web Shell Spearphishing Attachment Spearphishing Link Web Service Windows Admin Shares

Source: Corelight

There are lots of workflows here that could be largely automated.

EXFILTRATION

Automated Exfiltration

If an attacker is using an automated means of exfiltration, data artifacts are captured in the Corelight data.

To look for exfiltration in your network, you can use the Zeek package developed to calculate Producer/Consumer Ratio (PCR). PCR values indicate whether flows are consumptive (download) versus productive (upload). PCR values range from -1 (consumptive) to +1 (productive). To hunt for exfiltration using this package:

- 1. Install and enable the PCR package.
- 2. Generate a table of id.orig_h, id.resp_h, id.resp_p, and pcr from the conn log.
- 3. Use local_orig is false or local_resp is true to filter the results.
- 4. Reduce the results by filtering where pcr <= 0.
- 5. For each host generating flows where pcr >= 0, consider whether that host is expected to transmit data, inside or outside the network.

Another option is to use a SIEM to calculate the PCR using the information available in the Corelight conn log. The following query creates a table organized by host that contains the originating and responding bytes and a PCR value.

index=corelight sourcetype=corelight_conn | stats sum(orig_bytes) as Total_orig_bytes, sum(resp_bytes) as Total_resp_ bytes by id.orig_h id.resp_h | eval PCR=(Total_orig_bytes-Total_resp_bytes)/(Total_orig_bytes+Total_resp_bytes) | fields id.orig_h id.resp_h Total_orig_bytes Total_resp_bytes PCR

Data Transfer Size Limits

An attacker may attempt to transfer data or files by "chunking" them into smaller pieces, to avoid hard-coded data transfer limits or thresholds. We will present two methods to hunt for this technique.

The first method analyzes data leaving the network based on source and destination pairs and requires a data aggregation/visualization platform (unless you enjoy AWKing and GREPing through data):

- 1. Generate a table from the conn log including the id.orig_h, id.resp_h, id.resp_p, and sum(orig_bytes).
- 2. Sort the results by the largest sum (orig_bytes).
- 3. Examine each host and determine if there is a legitimate reason for uploads to that destination.

The second method analyzes the frequency, and sizes, of outbound transfers from each source:

- 1. Generate a table from the conn log including id.orig_h, id.resp_h, id.resp_p, and count(orig_bytes).
- 2. Sort the results by the largest count(orig_bytes).
- 3. Examine the results and determine the reason for all the connections with the same amount of data flowing from the source to the destination.

Threat hunting maturity model

LEVEL

INITIAL

- Relies primarily on automated alerting
- Little or no routine data collection

MINIMAL

- Incorporates threat intelligence indicator searches
- Moderate or high level of routine data collections

collection

 Follows data analysis procedures created by others

• High or very high level of routine data collection

collection

LEVEL

Source: Sqrrl

Threat hunting maturity model

Use AI to level up less experienced security teams

Conclusion

Support, not replace, the analyst

- Automated intrusion detection
 - We remain limited to finding what we can describe
- Paradigm Shift: Threat hunting
 - Assume you have been compromised already find them
 - Analysts drive tools support through visibility and automation
- Add AI to the toolbox to support analysts
 - Provide triggers and insights; guide assessment and workflow Use AI for what it's good at: deriving patterns from existing data

Beyond Detection: Al's Potential For Supporting Threat Hunters

LITTLE BOBBY BLY MY NEW JUST A JOKE. ARTIFICIAL INTELLIGENCE IT'S ARTIFICIAL NETWORK SECURITY INTELLIGENCE !! APPLIANCE !!! IS THAT A ZEEK STICKER? PAT i) 🔤 🤕

Robin Sommer

- Corelight, Inc.
- robin@corelight.com

by Robert M. Lee and Jeff Haas

www.littlebobbycomic.com/projects/week-239