

Integrity Monitoring

Detecting changes in the filesystem

Klaus Möller WP8-T1

Webinar, 7th of August 2020

Public

www.geant.org

3

What is Integrity Monitoring?

- "the process of validating the integrity of operating system files and directories"
- Integrity: file/directory content and metadata are unchanged with regards to a given "known good" state
- However: changes to files and directories are intented
 - Updates: OS, software etc.
 - Configuration changes: users, network (addresses), settings, etc.
- Detecting unauthorized or unintended changes
 - Those made by attacks or mistakes
- → File Integrity Monitoring (FIM)

B23

Why is (File) Integrity Monitoring useful?

- Assessing the impact of integrity violations
 - Which changes were made?
 - I.e. new firewall rules, new users, changed daemon/service configurations, unparseble configurations/libraries
 - Changed binaries/libraries/kernel (modules/drivers), ...
 - Additionally installed or removed files?
 - Crypto-miners, Spam-SW, phishing pages, AV, firewall, FIM, ...
 - What happened? How did it happen?
- Detecting unintended changes
 - Critial: configuration mistakes that open weaknesses
 - Empty passwords, disabling authentication, ...

Integrity monitoring workflow

- 4. Act
 - Valid state?
 - Change deliberately or unintentionally?
 - Consequences?
 - Preventable in the future?
- 3. Check: at regular intervals
 - Examine attributes of monitored files & directories
 - Compare exam results with baseline → Report

1. Plan: what to monitor, how to monitor

- Systems, files, directories
- Attributes: content, permissions, etc.

2. Do: Take Baseline

Record valid state(s)

B23

Plan: what systems should be monitored?

- Rule of thumb: By order of impact/mission criticality
 - Look at your Business Impact Analysis (if present)
 - Identity management, authentication databases/servers
 - I.e. KDCs, Domain Controllers, LDAP servers with authentication information
 - Compromising these will compromise most other systems
 - Systems storing your mission critical data
 - Database servers, file servers, backup servers
 - Security critical systems
 - Firewalls, SIEM, loghost, ...
 - Other mission critical systems
 - Webservers, application servers, load balancers, VM-hosts, central switches/routers, central DNS, central Email, HR, CRM, ...

Plan: what files should be monitored?

- Trusted computing base
 - Kernel, kernel modules/drivers
 - /boot, /lib/modules, C:\BOOTMGR, C:\Boot\BCD
 - Binaries, libraries
 - /bin, /usr/bin, /lib, /usr/lib
 - C:\Windows\System32
 - Directories in \$PATH (Linux) or %PATH% (Windows)
 - System configuration
 - Linux/Unix: /etc
 - Windows: Registry
 - Critical files in Home directories
 - ~/.ssh/authorized_keys, ~/.config

Plan: Limited checks

- Sockets, named pipes, IPC objects
 - Reading (i.e. checksumming) will likely block
 - Inode number will change when socket gets re-created at boot
 - Permissions, ownership, major/minor device number can be monitored
- Symlinks
 - Not all FIMs will monitor where the symlink points to

Confidential data

- Key material, esp. private keys
- No text diffs
- May show up in text diffs or logs
- Temporary filesystems/directories
 - /tmp, /usr/tmp, /var/tmp, /dev/shm, /run/user/, /etc/mntab
 - Permissions (sticky bit) are OK

Plan: What to exclude from checking?

- Ephemeral/dynamic file systems
 - /proc, /sys, /dev, /etc/mntab
 - Too many changes in operation to be useful
- Network file systems
 - NFS, CIFS, AFS, etc.
 - Check these on the server not over the network
- Removable media
 - USB/flash drives, CD/DVD/BD, Floppy(?)
 - Content will change with different media mounted

Plan: what attributes should be monitored?

- Content, of course
 - Complete file? that's called a backup;)
 - Usually cryptographic checksums: SHA256, ... (too often still MD5, SHA1)
 - For very large files (> 1 GByte), checksumming may take too long
 - Full content for small (vital) text files allows diff to show changes
- Permissions/ACLs
 - S-UID/S-GID bits
 - Write permissions on configuration files for ordinary users?
 - Read permissions for world appearing on confidential data?
- Owner, Group
 - System binaries/libraries should be owned by root
- Size
 - Binaries, libraries should not change size except through updates
 - Others (log files) should only grow what about log rotation?

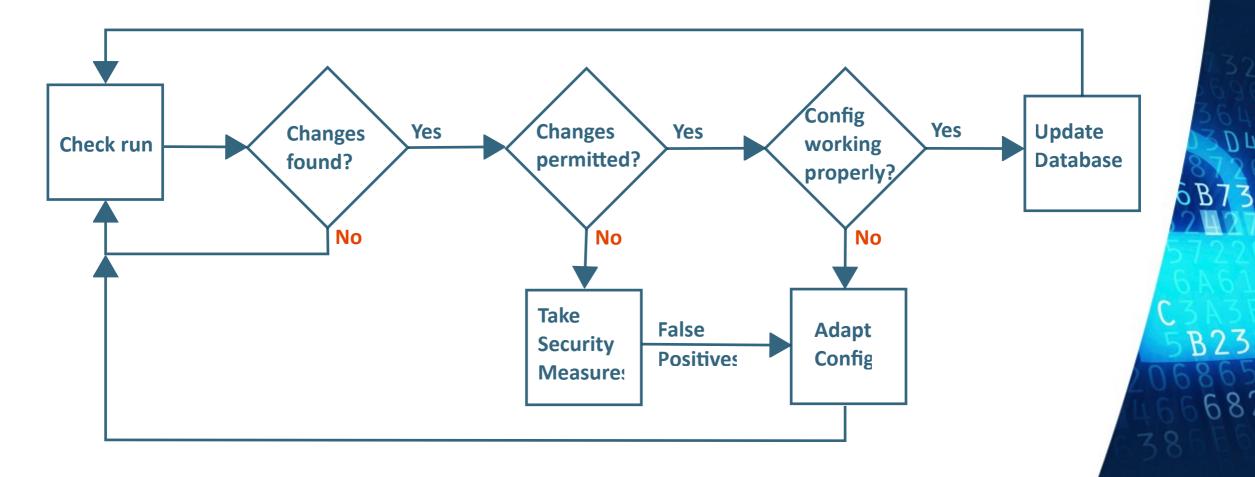
Plan: what attributes could be monitored?

- Device ID, Inode:
 - Somebody might have replaced stuff with mounts to another filesystem
- Number of links:
 - Each file in a directory has one link to it, plus itself and the parent directory
 - Hidden files/directories will show up as mismatch on link count
 - Works well on Ext2/3/4, vfat, and (old) standard Unix filesystems
 - Does not work with modern filesystems: XFS, Btrfs, ZFS
- MACtimes
 - Modification
 - Access
 - Creation (Windows), Change (of metadata/inode: Linux/Unix)
 - B(orn) or D(eleted) timestamps if supported by filesystem
 - Timestamps can be changed by attackers
 - Even creation with root privileges & anti-forensic tools

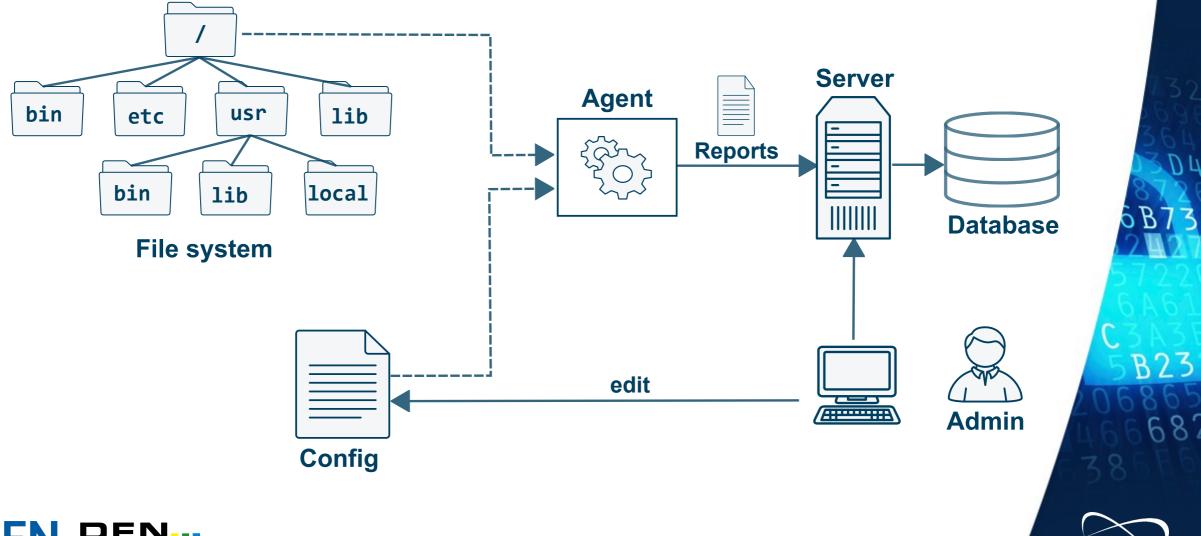
10

Do: Baselining

- Naive: find / -print0 | xargs -0 sha256sum > /tmp/my.db
- Baseline must be secured against tampering/loss
 - Best done by keeping on a central server
 - Same goes for configuration of the FIM
 - If kept locally, sign digitally, check before use
 - Availability issues: deleted locally, no network, how to act then...
- Baseline must be taken form a "known good"/valid/legal state
 - After a fresh/complete install?
 - After initial setup?
 - Patches, updates, later installs?


Check

- How often to check?
 - Depends, anywhere between once/hour and once/day
 - More checks more work, more load on the systems
 - OTOH: checking more often may spot attacks earlier
 - Ideal: real-time monitoring for changes (Linux: inotify system call)
- What to report?
 - Need actionable data: Report + Background = enough information to draft a plan to act upon
- How to report changes?
 - Log messages (syslog, eventlog) best to SIEM/central loghost
 - Email (standalone systems)
 - Console log?


Act: Workflow

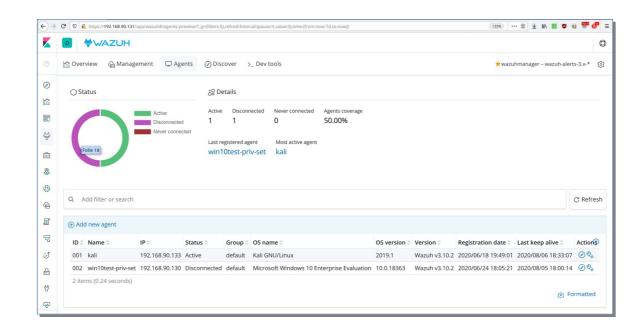
GÉAN

FIM: Schema

B23

68:

How to start?


- Begin small
 - One or two servers, only a handful of files
 - Can be implemented on spare hardware
- Observe, adapt, expand
 - Learn how and when changes happen and why
 - Adapt your configuration
 - Write down in knowledge base
- Expand bit-by-bit
 - Have a plan (what to monitor)
 - It's better to observe too few things than too much

Wazuh Live Demonstration

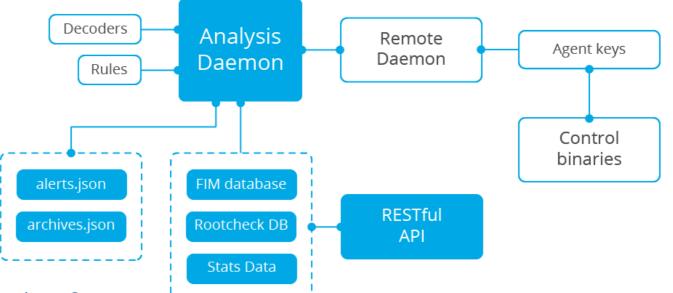
- Configuring syscheck
- Adding/deleting a file
- Changing the content of a file
- Looking into events/reports

0 kandeno foot - konsue		
<scan_on_start>yes</scan_on_start>		
Report new files		
<alert_new_files>yes</alert_new_files>		
Directories to check (perform all possible verifications)		
<pre><directories check_all="yes">/etc,/usr/bin,/usr/sbin</directories> <directories all="yes" check="">/bin,/sbin,/boot</directories></pre>		
Carrectories check_att- yes >/bth;/bbth;/bbtt/atrectories>		
<pre><directories check_all="yes" pre="" realtime="yes" report_change<="" whodata="yes"></directories></pre>	es="yes"> /etc/s	sh
ectories>		
Files/directories to_ignore		
<ignore>/etc/mtab</ignore>		
<ignore>/etc/hosts.deny</ignore>		
<ignore>/etc/mail/statistics</ignore>		
<ignore>/etc/random-seed</ignore>		
<ignore>/etc/random.seed</ignore>		
<ignore>/etc/adjtime</ignore>		
<ignore>/etc/httpd/logs</ignore>		
<ignore>/etc/utmpx</ignore>		
<ignore>/etc/wtmpx</ignore>		
<ignore>/etc/cups/certs</ignore>		
<ignore>/etc/dumpdates</ignore>		
<ignore>/etc/ssh/moduli</ignore>		
<ignore>/etc/svc/volatile</ignore>		
<ignore>/sys/kernel/security</ignore>		
setf xml	114,30	49%
() kali-demo-root 📓 () wazuh 📓 () kali-demo-evil		

 B^{2}

Wazuh: Agent

- Full Host Intrusion Detection System (HIDS)
 - Syscheck: Integrated FIM
 - Rootcheck: configuration check & rootkit detection
 - Log collector: Event & log file monitoring/forwarding (Filebeat)
 - Modules Manager: Place to plug-in user defined (scan) modules


17

B23

68

Wazuh: Server

- Analysis Daemon
 - Decodes and analyses incoming logs & events
- Remote Daemon: Agent management
- Elasticstack: Kibana, Filebeat
 - Analysis (ElasticSearch)
 - Log/Event forwarding reception (Filebeat)
 - Dashboard (Kibana)

Source: https://documentation.wazuh.com

B23

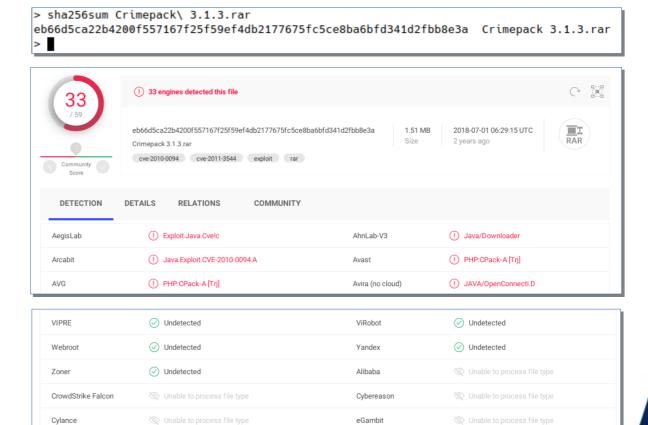
68'

Limits of FIM: Malware

- Some malware doesn't write anything to the filesystem
 - What's not there, can't be found
 - But most malware needs a means of persistence: Autostart keys, kernel modules, boot loader/parameters, etc.
 - This will leave traces
- Rootkits hide files/directories from every user
 - What is not visible can't be checked or seen
 - But hiding a file/subdir also alters the parent directory: Timestamps, Link counts, etc.
- A thorough check will detect *something*
- But it's up to the admin to pick up on strange reports

Limits of FIM: File signature evasion

- Find a collision,
 - I.e. a file that has the same cryptographic hash sum as the original
 - Can be done with weak/broken hash algorithms, like MD5 or SHA1
 - Very rare in practice
 - Do not confuse with cases where valid Authenticode signatures were used
 - These were made with leaked/stolen certificates
- Mitigation
 - Multiple checksums attacker has to find collisions for all employed hash algorithms
 - Stronger hash algorithms: SHA256, SHA-512, SHA-3, etc.
 - Full content comparision, i.e. diff



Other uses for file hashes: Virustotal

Endgame

- Unknown file, good or malicious?
 - Scan with your own Anti-Virus
 - What if it says nothing?
 - Use more AV-Scanner
 - https://virustotal.com
- Can't/won't send file
 - Malware upload blocked
 - May contain sensitive information
 - Search by cryptographic hash
 - md5, sha1, sha256

Palo Alto Networks

R73

What have you learned?

- What integrity monitoring (at the OS level) is
- How to do integrity monitoring
- How to configure the integrity monitoring software

What has been left out?

- Boot process integrity
 - TPM, secure boot (MS), EVM/LMA (Linux)
- Binary signing under (elfsign Linux, Authenticode Windows)
- Cryptographic signing of files (PGP, S/MIME)

Thank you

Any questions?

Next module: Network 1st Hop Security, 11th of August 2020

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

References

- Kim, Gene H.; Spafford, Eugene H. (1994). "The Design and Implementation of Tripwire: A File System Integrity Checker"
 - https://dl.acm.org/doi/10.1145/191177.191183
- Lawrence Grim: "IDS: File Integrity Checking"
 - https://www.sans.org/reading-room/whitepapers/ detection/ids-file-integrity-checking-35327
- OSSEC Host-Based Intrusion Detection Guide
 - Rory Bray, Daniel Cid, Andrew Hay, Syngress, 2008, ISBN: 978-1597492409
- Host integrity monitoring using OSIRIS and Samhain
 - Brian Wotring, Syngress, 2005, ISBN-13: 978-1597490184

Some Open Source FIM software

- Tripwire: the grandparent of many FIM software (1992)
 - https://github.com/Tripwire/tripwire-open-source
- Aide: Advanced Intrusion Detection Environment
 - https://aide.github.io/
- Afick: Another File Integrity ChecKer
 - http://afick.sourceforge.net/
- Samhain: Linux FIM with additional monitoring of kernel data structures
 - https://www.la-samhna.de/samhain/
- OSSEC, Wazuh: Full open source HIDS with FIM (syscheck)
 - https://www.ossec.net/
 - https://wazuh.com/

Wazuh Live Demonstration

- Wazuh Server Appliance
 - https://documentation.wazuh.com/3.10/installationguide/virtual-machine.html
 - https://packages.wazuh.com/vm/wazuh3.10.2_7.3.2.ova
- Kali Linux
 - https://www.kali.org/downloads/
- Windows 10 from Microsoft Evaluation Center
 - https://www.microsoft.com/en-us/microsoft-365/windows

Backup material

Stuff that didn't make it due to time constraints

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

Decoding Wazuh file modes

DFN...

F

DEUTSCHES FORSCHUNGSNET

R

/* File types. */		
<pre>#defineS_IFDIR</pre>	0040000 /* Directory. */	
#define S IFCHR	0020000 /* Character device. */	
#define S IFBLK	0060000 /* Block device. */	
#defineS_IFREG	0100000 /* Regular file. */	
<pre>#defineS_IFIF0</pre>	0010000 /* FIFO. */	
<pre>#defineS_IFLNK</pre>	0120000 /* Symbolic link. */	
<pre>#defineS_IFSOCK</pre>	0140000 /* Socket. */	
<pre>/* Protection bits.</pre>	*/	
<pre>#defineS_ISUID</pre>	04000 /* Set user ID on execution. */	
<pre>#defineS_ISGID 02000 /* Set group ID on execution. */</pre>		
#deline2_1301D		
	01000 /* Save swapped text after use (sticky).	*/
		*/
#defineS_ISVTX		*/
<pre>#defineS_ISVTX #defineS_IREAD</pre>	01000 /* Save swapped text after use (sticky).	*/
<pre>#defineS_ISVTX #defineS_IREAD #defineS_IWRITE</pre>	01000 /* Save swapped text after use (sticky). 0400 /* Read by owner. */	*/

B23

68

In-House Tools

- What if no FIM software on the system?
 - By default, there is none, or it's not active
- Some tools come with the operating system
 - Linux: Package database (rpm, dpkg)
 - Already has checksums, permissions, sizes, and more
 - Windows: sfc, sigverif, sigcheck
 - Checks the Authenticode signatures on executables and DLLs
- None of them will replace an FIM
 - Meant for system administration, not security
 - But better than nothing in emergencies (see shortcomings)

Linux In-House Tools: rpm & dpkg

- **rpm:** package manager for Redhat-based systems
 - CentOS, Fedora, openSUSE, ...
- dpkg: package manager for Debian-based systems
 - Ubuntu, Kali, ...
- Verify option: -V
 - Checks against information in the local database of installed package
 - Example: size and modification time have changed

```
> rpm -V openssh
S.?...T. c /etc/ssh/sshd_config
>
```


rpm & dpkg -V: Output Format

• Output format for differences from package database information

• • • • • • • •	← Test passed
S	← file Size differs
М	 Mode differs (includes permissions and file type)
5	← digest (formerly MD5 sum) differs
D	← Device major/minor number mismatch
L	← readLink(2) path mismatch
U	← User ownership differs
G	← Group ownership differs
т	← mTime differs
Р	← caPabilities differ
?	 Information not in the database

Linux In-House Tools: Shortcomings

- Does not cover
 - Other package formats (for example self-extracting software)
 - Manually installed files (.tar.gz)
 - Files copied to different locations (chroot jails)
 - Files added by the attacker
- Local system only
- No automation/reporting
- Dpkg implements only the checksum part
- On a live system, lots of deviations from install
 - No way to flag changes as good and include them in the database
- Database is not secured against attackers with root privileges

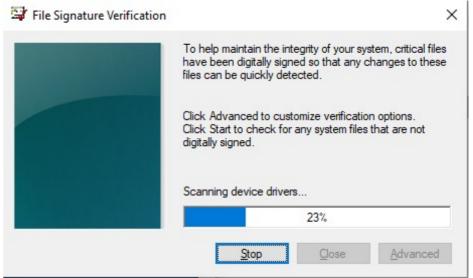
Windows In-House Tools: System File Checker

- Check if protected system files have been altered
 - Just verify: sfc.exe /verifyonly
 - Verify and restore: sfc.exe /scannow
 - Backups in %windir%\system32\dllcache
 - Or installation source
 - Not enabled by default
 - Log: %windir%\Logs\CBS.log
- Often bypassed by attackers
- Shortcomings
 - What is protected is not configurable by users/admins
 - Local system only

PS C:\Windows\system32> sfc /verifyonly

Beginning system scan. This process will take some time.

Beginning verification phase of system scan. Verification 100% complete.


Windows Resource Protection did not find any integrity violations. PS C:\Windows\system32>

Windows In-House Tools: Sigverif

- Tool to verify signatures of device drivers in Windows
 - Device drivers (i.e. kernel modules) must be cryptographically signed to be loaded by the kernel
 - Reports to local log (default: C:\Users\Public\Public Documents\ Sigverif.txt)
- Shortcomings
 - Checks only fixed list of drivers
 - List not configurable
 - No config file checks
 - No registry key checks

Windows In-House Tools: Sysinternals Sigcheck

- Verifies signatures like sigverif
- More fine-grained controls
 - CLI tool (scripting)
 - CSV output
 - Can show unsigned files only: sigcheck -u
 - Can check with virustotal
- Shortcomings
 - Still nothing for configuration/registry checks

