

Network 1st Hop Security

Mitigating the security risks of ARP, DHCP and IPv6 Autoconfiguration

Klaus Möller WP8-T1

Webinar, 11th of August 2020

Public

www.geant.org

The First Hop

- The way from the end-system (PC, Laptop, Server, Tablet, etc.) to the default router
- Aka the local (W)LAN segment
 - One collision domain for all systems on the local net: Hubs, shared coaxial cabling (very old), access point (WLAN)
 - One collsion domain per end-system: VLAN with one or more switches
- Additionally: Locally active servers for network infrastrcture
 - DHCP
 - Optionally: TFTP, DNS, others

Local network: Attack Surface

- Detection of other hosts on the subnet: ARP, IPv6 NDP
 - Obtaining the MAC address for a given IP address to communicate locally
 - Without the MAC address of the default gateway, no communication beyond local network
- Automatic configuration of IP addresses: DHCP, IPv6 SLAAC
 - This usually includes the IP address of the default gateway (router)
- Other end-system configuration: DHCP (IPv4 & IPv6)
 - DNS server, NTP server, (Windows) Domain Controllers
- Not covered
 - Directly accessible services on switches, access points or routers (SSH, Web, etc.)
 - Other servers on the local network

ARP Basics

- ARP: Address Resolution Protocol (RFC 826)
 - Host wants to find the link-layer (MAC) address for a (destination) IP-address
- How:
 - Host broadcasts (MAC address ff:ff:ff:ff:ff:ff) ARP request
 - If a host with this IP address is on the local link, it responds with its IP address in an Ethernet frame (unicast to the querying host)
 - Learned address pairs (IP, MAC) are stored locally in the ARP cache
 - Cache will be updated when a host receives ARP responses, even if already present
 - Hosts may send unsolicited ARP responses (i.e. in case of address changes)
- ARP can be used for duplicate address detection (RFC 5227)
 - Requests with empty source address and (tentative) IP address

ARP Attacks

- ARP Spoofing: Sending of fake ARP responses
- ARP (Cache) Poisoning: Planting false entries into a victims ARP cache through ARP Spoofing
- Allows Man-in-the-Middle (MitM) attacks: reading or alterting (unencrypted) traffic through impersonating the legitimate communication partner
 - Usually the default gateway, proxy, etc.
 - Impersonating DNS server or DHCP server allows further MitM attacks

ARP Attack Detection

- Watch for deviating entries in the ARP cache
- Deviating: IP-MAC address pair is not what it is supposed to be
 - Esp. default gateway, DNS/DHCP servers, proxies, etc.
- CLI: arp -an (old) or ip neighbor show (newer)
- Better: Monitoring tools: addrwatch, ArpON, arpwatch
 - One host per LAN segment is enough due to ARP ethernet broadcasts
 - The segment may contain several IP subnets
 - Alerting through Syslog or E-mail
- Monitoring switch table of (MAC, port, VLAN) mappings (CAM)
 - Gives also a hint to where the attack might come from (switch ports)

ARP Attack Mitigation

- Static ARP cache entries
 - I.e. manually configuring IP-MAC pairs on each host
 - Impractical on larger networks
- Locking down MAC addresses on switch ports
 - Works against ARP spoofing only when triplet (MAC, IP, port) is monitored/protected
 - Manual configuration or auto-learning through DHCP traffic monitoring
 - Reconfiguration required when systems move, HW changes, etc.
- Encrypting/authenticating traffic end-to-end with certificates
 - Alerts/aborts communication when certificates do not match
 - How do users know a certficiate is faked?

DHCP: Basics

- DHCP: Dynamic Host Configuration Protocol (RFC 2131)
- How it works: "DORA"
 - Client sends (DHCP) Discover Message
 - Server answers with (DHCP) Offer Message
 - Client chooses from the offers, sends (DHCP) Request message
 - Server sends (DHCP) Acknowledgement message with configuration parameters
 - IP address, MTU, TTL, DNS server, NTP server, Domain controller, etc.
- Implemented on top of (older) BootP protocol
 - Server: Port 67/udp
 - Client: Port 68/udp

DHCP: Attacks

- Rogue DHCP client
 - Attacker client assigns all IP addresses to himself → Denial-of-Service by address pool exhaustion
 - Not such a big problem with IPv6 really?
- Rogue DHCP server
 - Attacker masquerades as the (legitimate) DHCP server
 - Can send his own configuration parameters to clients
 - Means for further attacks: MitM, eavesdropping, modifying traffic
- DHCP Spoofing
 - Attacker sends forged DHCP responses
 - Consequences similar to rogue DHCP server

DHCP Attack Detection

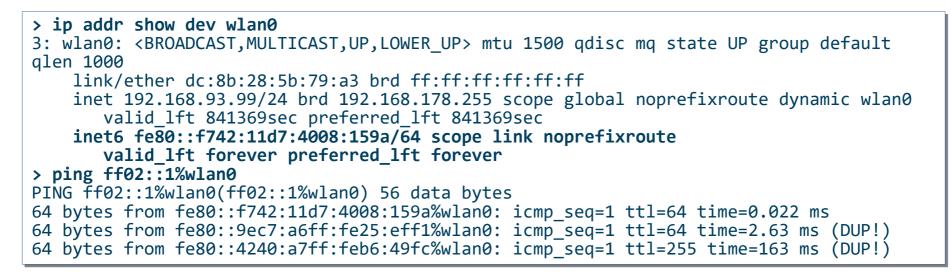
- Monitor DHCP messages (DHCP snooping)
 - Unusually large number of Discover or Request packets
 - ⇒ perhaps a misconfigured or rogue DHCP client
 - DHCP Offer/Acknowledgements not coming from legitimate (IP, MAC) address pairs
 - ⇒ sign of rogue DHCP servers or DHCP spoofing
- Monitor DHCP server logs
 - Handing out unusually large number of leases
 - Requests for strange options (those not usually asked for by clients)

DHCP Attack Mitigation

- Filtering of DHCP Offer/Acknowledgements (DHCP Guard)
 - Those that come from switch ports other than that of the legitimate server
 - The other part of DHCP Snooping
 - Filter DHCP at the network boundary firewall
 - If not using DHCP relays, filter at the subnet boundary
- DHCP authentication (RFC 3118)
 - Servers with support available (Cisco, Juniper, ISC, ...)
 - Client support not yet there?
 - All clients on the (local) net have to support it

DHCPv6

- Different protocol (RFC 8415)
 - Now implemented directly on UDP(v6)
 - Client port: 546/udp
 - Server port: 547/udp
- Operational principle is the same as in DHCP on IPv4
 - DISCOVER, OFFER, REQUEST, ACKNOWLEDGE messages
- Security software has to work with different protocol and port numbers



12

IPv6

- Yes, you have it on your local (sub)network although it might not work beyond the first hop
- It's build-in and enabled by default on all operating systems
 - Linux, *BSD, Windows, MacOSX, etc. since 15 years at least!

B23

IPv6 Address configuration

- Three ways to configure IPv6 addresses
 - Static (manually)
 - Stateless Address Autoconfiguration (SLAAC)
 - Stateful (DHCPv6)
- Really just choosing the Interface ID (last 64 bit)
- Prefix (first 64 bit) usually given
 - Statically by network admin, automatically by router/DHCPv6 server
- Problems
 - Differences between/and co-existance of IPv4 and IPv6
 - Privacy issues with IPv6 interface IDs

IPv6 Stateless Address Auto Configuration (SLAAC)

- Process, by which IPv6 hosts obtain
 - (Global) IPv6 Prefix
 - Interface ID
 - Router (default gateway) IP address
 - DNS server IP address
 - Check if their (choosen) IP address is not already in use on the subnet
- IPv6 Neighbor Discovery Protocol (RFC 4861)
- Implemented in five ICMPv6 message types
 - Router Solicitation (Type 133)
 - Router Advertisement (Type 134)
 - Neighbor Solicitation (Type 135)
 - Neighbor Advertisement (Type 136)
 - Redirect (Type 137)

IPv6 Neighbor Discovery

- Neighbor Solicitation/Advertisemens
 - Host A wants to send data to host B (in the local subnet)
 - A knows Bs IPv6 address but not the link-layer address
 - A sends Neighbor Solicitation packet the multicast MAC address B is regsitered at (can be deducted from B's IPv6 address)
 - B answers with Neighbor Advertisement Packet to A's Unicast MAC address (knows it from the Neighbor Solicitation message)
 - This packet includes B's MAC-Address
 - A and B communicate via Unicast from here on
- This mechanism replaces (IPv4) ARP!

IPv6 Duplicate Address Detection

- Host A wants to know if the IPv6 address choosen is already in use in the subnet
- A sends Neighbor Solicitation Packet to the multicast address of the choosen IPv6 address (source address is ::)
- If the address is already in use, the using host sends a Neighbor Advertisement packet to the link-local all-nodes multicast address (ff02::1)
- If A receives no answer, the address can be used

IPv6 Router Discovery

- Router periodically sends Router Advertisements (RA)
 - Unsolicited: semi-periodically from router to link-local all-nodes address (ff02::1)
 - Solicited: as answer to Router Solicitation (RS) packet from a host
- Host extracts
 - List of valid (subnet)prefixes for this subnet
 - If a prefix can be used for SLAAC or not
 - List of routers (default gateways)
 - Lifetime of the RA
 - Hop Limit
 - Optional parameters like MTU or DNS servers

IPv6 SLAAC Process

- Host creates a link-local IPv6 address (State: tentative)
- Hosts uses DAD to check if the address is unique
 - If already in use: STOP!
 - Else: IP address enters state valid
- Host sends Router Solicitation
- Host received Router Advertisement(s)
 - If no RA received, continue with DHCPv6
 - If prefix can be used for SLAAC, create global IPv6 address
- Check global address with DAD
 - If unique (no answer), enter state Valid
 - If not unique, continue with next prefix
 - No more prefixes? STOP!

ND Attacks

- ND spoofing
 - For each Neighbor Solicitation packet, send a (fake) Neighbor Advertisement
 - DAD/SLAAC stops → Denial of Service
 - Send out lots of fake Neighbor Advertisements
 - Overflow of Neighbor tables in systems on the local network

B23

RA Attacks

- RA spoofing (aka Rogue IPv6 Router)
 - Attacker sends fake RA packets
 - Removes existing routers from routing table
 - Can assign fake prefixes to hosts on the subnet
 - Makes his/her router the default gateway → MitM attacks
 - Can turn an IPv4 only net into a dual stack network!
- IPv6 is preferred by default over IPv4!

NDP Attack Detection

- Monitoring of IPv6 address MAC address pairs: addrwatch
 - Like arpwatch, but includes IPv6
- Monitor routing/neighbor tables at local hosts
 - Sudden increase is likely a sign of attack \rightarrow HIDS
- Snooping of ICMPv6 at the switch
 - Catches both ND and RA attacks and probably more

NDP Attack Mitigations

- Filtering of RAs on the switch ports (Router Guard)
 - Can be bypassed with IPv6 Extension Headers if BCP not followed
- Static configuration of IPv6 addresses (disable RA processing)
 - Ignore ICMPv6 types 133, 134, 137 completely
 - Resolves most RA issues at the price of considerable more work
 - And shuts down DHCPv6 also:(
- Set router preference flag (RFC 4191) to "high" on your routers
 - Only a minor help
- Authentication of ND and RA packets (SEND)
 - Not used/supported

w.geant.org

DHCPv6 and SLAAC

- Usage of DHCPv6 is dependent on flags in RAs
 - Managed Configuration Flag (M): Use a *Configuration Protocol* (i.e. DHCP) to obtain an IPv6 address (stateful)
 - Other Stateful Configuration Flag (O): Use a *Configuration Protocol* to get further informations (i.e. DNS servers, etc.)

M O Meaning

- 0 0 Don't use DHCPv6
- 0 1 Use DHCPv6 only for further information (DHCP Stateless)
- 1 0 Use DHCPv6 only to obtain an IPv6-Adress
- 1 1 Use DHCPv6 for both IPv6 Adress and further information

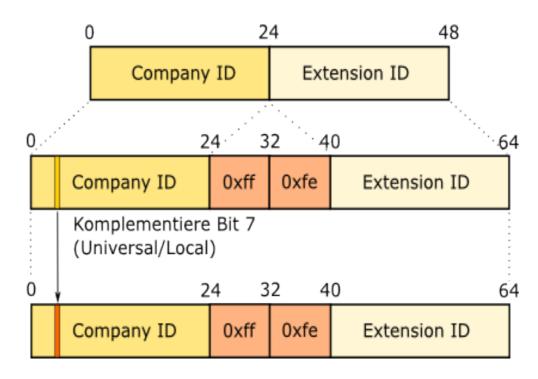
B73

Mitigation: One Size doesn't fit all

Zone	Rogue RA Mitigation Measure	cost (+ o -)	feasibility	effect (+ o -)
Internal Network	Router-Preference=high / Monitor NDP Managed Switch (RA Guard, Port ACLs)	+/-	+	0/+
Internal Server-Zone	Router-Preference=high / Monitor NDP Disable RA processing	+	+	+
DMZ	Router-Preference=high / Monitor NDP Disable RA processing	+	+	+
Guestnet Wired	Router-Preference=high Managed Switch with RA Guard or Port ACLs	-	+	+
Guestnet Wireless	Router-Preference=high Partitioning	+/0	+	+

Original slide(s): https://www.first.org/education/ipv6_security.zip

B23


IPv6 Local interface ID

- Two step process
 - Derive EUI-64 from 48 Bit MAC address
 - Complement bit 7

MAC address say: 00:25:64:df:5d:c7

EUI-64 address say: 00:25:64:ff:fe:df:5d:c7

IPv6 Interface ID say: 0225:64ff:fedf:5dc7

Company ID: http://standards.ieee.org/regauth/oui/oui.txt

GÉANT

5B7

B23

682

IPv6 Interface ID Privacy Problem

- 64 bit is enough to uniquely identify a system (48-bit actually)
- Tracking possible across different subnets (work, home, cafe, ...)
- Solution: Privacy Enhancements (RFC 4941)
- Randomly choosen Interface ID with regular changes aka *temporary address*
- However
 - Default interval is often too long \rightarrow allows tracking again
 - Router Advertising and Kernel variables
 - And it's not changed when the prefix changes
 - An EUI-64 (public) address may be assigned additionally, preference?
 - Controlled by kernel variables on Linux/*BSD

What you have learned?

- Basic Overview of attacks on ARP, IPv6 NDP and DHCP(v6)
- Basic Mitigation measures

What has been left out?

- DNS/mDNS Security: Will be covered in an upcoming course on DNS Security
- LAN protocols: STP, VTP, LLDP, CDP, etc.: Turn it off on links to end-systems
- Router failover protocols: HSRP, VRRP, etc.

Thank you

Any questions?

Next module: *Authentication*, 13th of August 2020

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

References

- F. Gont: "Network Security: IPv6 Security for IPv4 Engineers", Internet Society, March 2019, https://www.internetsociety.org/resources/deplo y360/ipv6/security/ipv4-engineers
- A. Pilihanto: "A Complete Guide on IPv6 Attack and Defense", SANS 2011, https://www.sans.org/readingroom/whitepapers/detection/complete-guide-ipv6attack-defense-33904
- J. Davies "Understanding IPv6", 3rd Ed., Microsoft Press, 2012, ISBN-13: 978-0735659148
- R. Droms, T. Lemon "The DHCP Handbook", 2nd Ed. SAMS 2002, ISBN-13: 978-0672323270

Standards

- RFC 826: "An Ethernet Address Resolution Protocol", D. Plummer, November 1982, https://tools.ietf.org/html/rfc826
- RFC 2131: "Dynamic Host Configuration Protocol", R. Droms, March 1997, https://tools.ietf.org/html/rfc2131
- RFC 3118: "Authentication for DHCP Messages", R. Droms, W. Arbaugh, June 2001, https://tools.ietf.org/html/rfc3118
- RFC 3971: "SEcure Neighbor Discovery (SEND)", J. Arkko et al, March 2005, https://tools.ietf.org/html/rfc3971
- RFC 4191, "Default Router Preferences and More-Specific Routes", R. Draves, November 2005, https://tools.ietf.org/html/rfc4191
- RFC 4861: "Neighbor Discovery for IP version 6 (IPv6)", T. Narten et al, September 2007, https://tools.ietf.org/html/rfc4861
- RFC 5227: "IPv4 Address Conflict Detection", S. Cheshire, July 2008, https://tools.ietf.org/html/rfc5227
- RFC 8415: "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", T. Mrugalski et al, November 2018, https://tools.ietf.org/html/rfc8415

Tools: Offense

- ARP
 - Arp-scan: https://github.com/royhills/arp-scan
 - Ettercap: https://www.ettercap-project.org/
- DHCP
 - DHCPig:https://github.com/kamorin/DHCPig
 - Dhcpstarv: http://dhcpstarv.sourceforge.net/
 - Yersinia: https://sourceforge.net/projects/yersinia/ (old homepage, new homepage broken?)
- IPv6
 - SI6 Networks' IPv6 toolkit: https://www.si6networks.com/research/tools/ipv6toolkit/
 - Chiron: https://github.com/aatlasis/Chiron
 - THC IPv6 Attack Suite: https://github.com/vanhauser-thc/thc-ipv6

Tools: Defense

- ARP
 - Addrwatch: https://github.com/fln/addrwatch
 - Arpwatch: ftp://ftp.ee.lbl.gov/arpwatch.tar.gz
 - TuxCut: https://a-atalla.github.io/tuxcut/
 - ArpON: http://arpon.sourceforge.net/
- DHCP
 - Open DHCP Locate: http://odhcploc.sourceforge.net/
 - Univ. Princeton dhcp_probe: https://www.net.princeton.edu/software/dhcp_probe/
 - Microsoft DHCPLOC Utility: https://gallery.technet.microsoft.com/DHCPLOC-Utility-34262d82
- IPv6
 - Addrwatch: https://github.com/fln/addrwatch

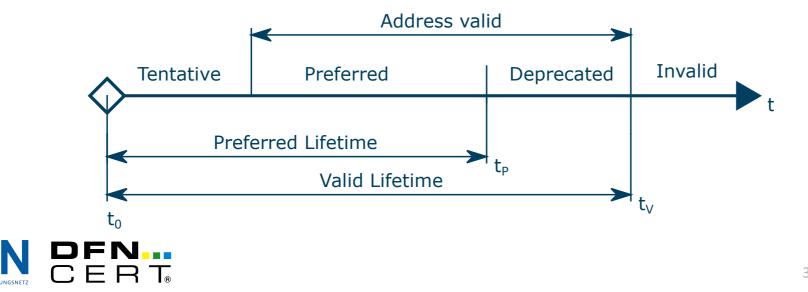
Backup material

Stuff that didn't make it due to time constraints

www.geant.org

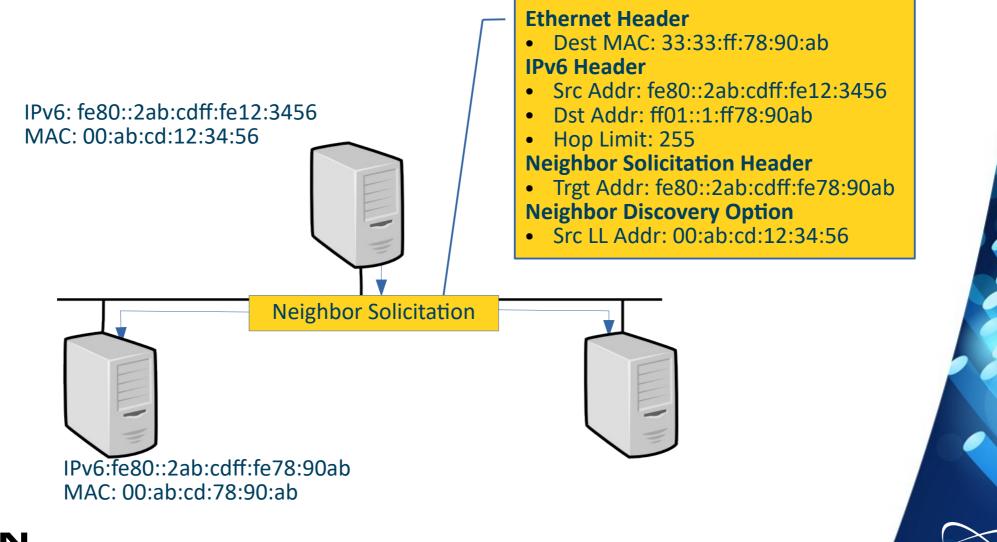
© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

IPv6 Address configuration

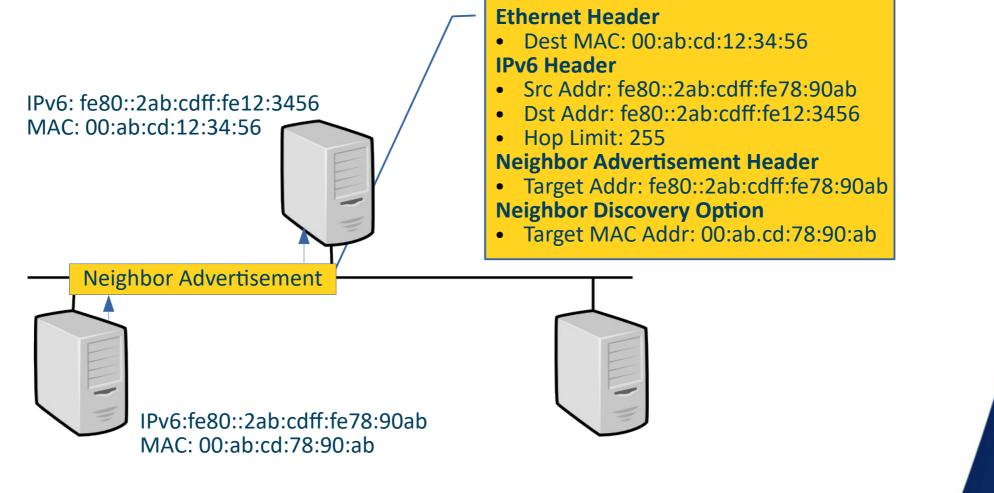

- Static, like IPv4
 - Linux: ifconfig ... or ip addr ...
 - Persistent configurations vary (/etc/...?)
 - Windows: GUI or netsh interface ...
- Use for
 - Central servers that better have fixed addresses
 - Administrators responsibility that addresses are unique
- High Security, if
 - Neighbor Advertisements are ignored
 - Router Advertisments are ignored
 - What to do when router fails (VRRP?)

IPv6 Address states

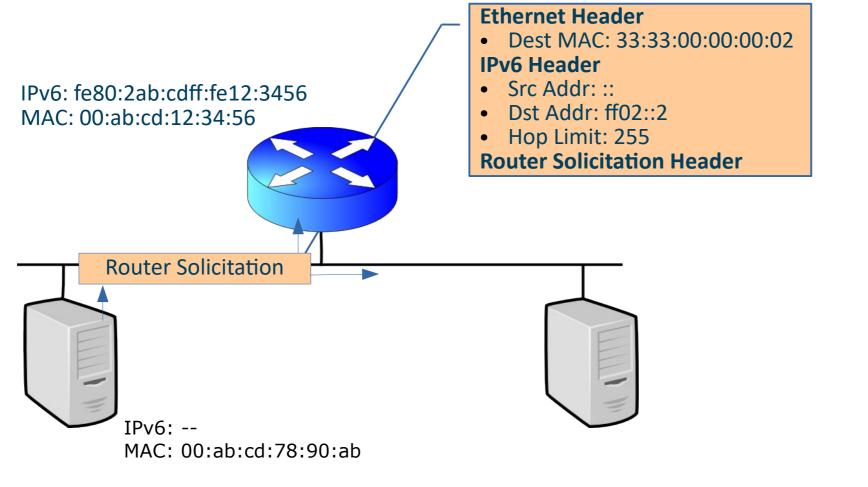
- Tentative: Address is still being checked for uniqueness
- Valid: Address can be used to send and receive
 - Includes Preferred and Deprecated states
- **Preferred**: Address is preferred for new connections
- Deprecated: Address should not be used for new connections
- Invalid: Address can't be used anymore

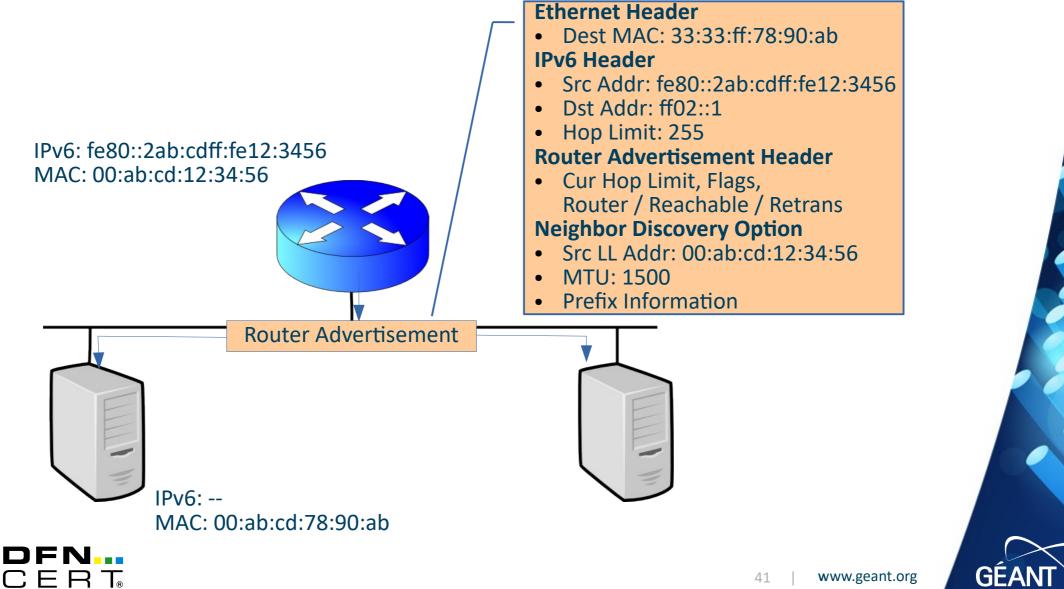

How to enable/disable Privacy Extensions

- Linux
 - sysctl -w net.ipv6.conf.all.use_tempaddr=2 (Default=0)
 - Sysctl -w net.ipv6.conf.all.temp_preferred_lft=14400 (Default 86400)
 - Entries in /etc/sysctl.conf
- FreeBSD/Mac OS X
 - sysctl -w net.inet6.ip6.use_tempaddr=1
 - sysctl -w net.inet6.ip6.prefer_tempaddr=1
- MS Windows
 - netsh interface ipv6 set global randomizeidentifiers=disabled
 - Default: enabled

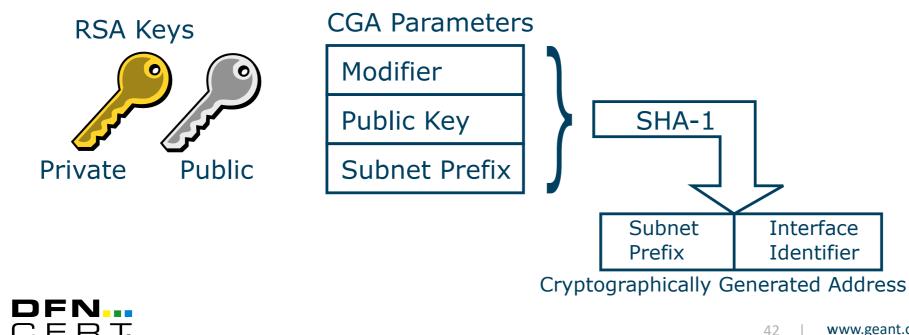

IPv6 Neighbor Solicitation

DFN DFN CERT®


IPv6 Neighbor Advertisement

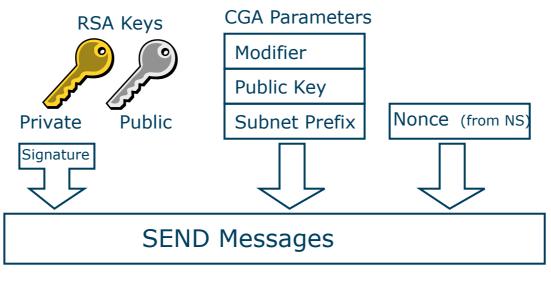

GE

IPv6 Router Solicitation



IPv6 Router Advertisement

IPv6 Secure Neighbor Discovery (SEND, RFC 3971)


- Host has to prove that an IPv6 address really belongs to it
- Host creates RSA key pair
- Used to generate Cryptographically Generated Address (CGA)
 - Modifier: Random numbers

IPv6 Secure Neighbor Discovery

- Host adds SEND messages as options to Neighbor Adverisements
- "Proof"
 - The CGA address really belongs to the public key
 - The host has this accompanying private key
- For a successful attack, the attacker has to find (in time) a key pair that generates the same signature

IPv6 SEND Problems

- Lack of support in operating systems:
 - None: Windows, MacOS X, BSD
 - Linux kernel patches, but not in mainline
 - Cisco IOS 12.2, Juniper?
- Susceptible to Denial-of-Service attacks
 - Attacker floods local network with SEND NS packets
 - Victims have to to many cryptographical operations (RSA is slow)
- Layer 2 attacks (MAC address spoofing) can still be done

