

Details of selected DDoS Attacks

How the attacks work from a technical perspective

Klaus Möller WP8-T1

Webinar, 10th of February 2021

Public

www.geant.org

What we will cover today - and what not

- Layer 3 & 4 Attacks
 - ICMP
 - UDP
 - TCP
- Layer 5+ Attacks
 - HTTP
 - SSL
 - Regular expressions
 - Hash functions

- Local DoS Attacks
 - Even those that have network coordination, downloads, payment, etc.
 - Encrypting Ransomware
- Physical Attacks (Layer 1)
- Data-Link Attacks (Layer 2)

B23

DDoS Attack Characterisation by OSI Layer

- Layer 1 (Physical)
 - Cutting cables, electronic jamming, breaking line-of-sight, ...
- Layer 2 (Link Layer)
 - ARP spoofing/poisoning, CAM table floods, WiFi (de)authentication attacks, ...
- Layer 3 (Network)
 - ICMP/UDP flood, too large packets (Ping of Death), overlapping fragments (Teardrop), ...
- Layer 4 (Transport)
 - TCP <Flag> Flood, TCP Connect, Window size 0, ...
- Layer 5+ (Session, Presentation, Application)
 - Slow GET/POST (HTML) Re(gular Expression) DoS, SSL DoS, XML (Billion Laughs),

DDoS Attack Characterisation by Effect on Target

- Crashes (*vulnerability*)
 - Most severe: permanent hardware/firmware damage
 - Less severe: Kernel panics (Blue screens), Reboots, Lock-ups
 - Limited: Application Crashes/Core dumps or Lock-ups
- Exhaustion of (limited) resources (volumetric)
 - Line Bandwidth
 - Packet switching capacity
 - CPU cycles
 - Memory
 - # of Processes, # of half-open connections, # of semaphores, etc.
- Recovery may be immediate (after the attack ends) or take some time(out) period

TCP/IP Vulnerability Attacks

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

5

Vulnerability Attack: LAND

- Local Area Network Denial
 - First discovered in 1997
 - Nearly all OS of that time were vulnerable
 - Similar application layer attacks have been found in other services (SNMP, Kerberos)
- Source and destination IP address are that of the victim
- Source and destination port are the same, needs open port on victims machine
- Attacker needs one packet to start, victims system then endlessly replies to itself, eventually locking up
- Simulate: hping3 -S -p 80 -a *target target*

Vulnerability Attack: *Teardrop*

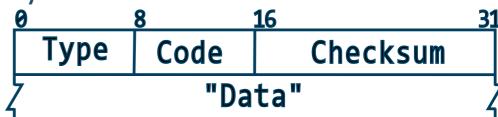
- Very old: 1997 today's OSes are not vulnerable
- Attackers sends TCP/IP packets with specially crafted IP fragments
 - Overlapping fragments
 - I.e. fragment offset + payload size ≠ fragment offset of next packet
 - Assembled payload will be bigger than the maximum IP packet size (65536 bytes)
- Triggers bug in kernel packet re-assembly code \rightarrow OS crash
 - Windows 3.1x, Windows 95, and Windows NT
 - Linux < 2.0.32 and < 2.1.63
- Related vulnerabilities appeared 2018
 - Fragment Smack, (IP) fragment re-assembly queue, CVE-2018-5391
 - Segment Smack, TCP Segments with random offsets, CVE-2018-5390

Vulnerability ICMP Attack: *Ping of Death*

- Very old (mid 90s) attack that crashed systems
 - Exploits bug in the IP stack, when dealing with reassembled packets being larger than 65536 bytes, the maximum size of IP packets
 - Host OS needs to check that fragment offset + fragment size < 65536
- Attacker sends a number of fragmented IP-Packets to the victim host
 - Usually done with ICMP Echo Reply packets, hence the name
 - Last fragment has data part longer than 7 bytes
 - ping -1 65510 *target*
- Re-appeared in 2013 with ICMPv6 and in 2020 with ICMPv6 Router Advertisements
 - CVE-2013-3183 and CVE-2020-16898

ICMP Attacks

www.geant.org


© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

9

ICMP – Internet Control Message Protocol

- Management protocol integrated into IP layer
 - Most important: Type and Code
 - Checksum & "Data" irrelevant here
- Use cases
 - Connectivity test (Echo Request/Reply) type 8/0
 - Destination unreachable report: type 3, code 0 15
 - Re-routing of packets (Redirect) type 5, code 0 2
 - Router Advertisement/Solicitation: type 9/10 (usually not for IPv4)
 - Error Reporting (Time exceeded, Parameter Problem): type 11/12, code 0-2
 - Time synchronisation (Timestamp Request/Reply): type 13/14
- Everything else is not legit and can be discarded safely
 - Router adv. and Time sync can be blocked too

B23

ICMP Flood Attacks

- PING: Pair of ICMP Echo Request & -Reply packets
- Attacker spoofs ICMP Echo Reply packets (type 0, code 0)
 - Echo request would DoS himself
 - Arbitrary "data", checksum doesn't need to be correct
- Other ICMP floods with other types/codes
- Destination address is that of the victim (unless reflection attack)
- Source address is usually spoofed, i.e. random
 - But may be constant or even that of the attacking bot
 - Depends on egress filtering at the source network
- Packet size varies, usually minimum (64) or maximum (1500)
 - Depending on whether the attacker wants to exhaust switch's packet switching capacity or line bandwidth

Reflected ICMP Flood: Smurf

- Honey! I think bur network is having another Smurf attack!
- One of the earliest Reflection/Amplification DDoS attacks
 - Attacker spoofs victims IP address as source address
 - Sends packet to directed broadcast address of a network, the reflector
 - E.g. 192.168.12.255 (if net mask is 255.255.255.0)
- All active hosts on the network would reply back to victim
 - Amplification factor varied in practice: usually 10 100
- Since deprecation of directed broadcast forwarding, this has lost significance in favour of other amplifiers
 - Host are also discouraged from answering directed broadcasts
- Simulate: hping3 --icmp --flood -a target reflector

ICMP Attack: *Ping Flood*

- Saturation attack against line bandwidth
 - Secondary effect on CPU usage of the victims host
- Attacker sends ICMP Echo Request packets as fast as possible
 - Will elicit Echo Responses from Victim host
- Goal is to saturate both downlink (to the victim) and uplink
- Works well with asymmetric Lines (DSL)
- Source address is spoofed (or attacker would DoS herself)
- Other characteristics as in ICMP floods

UDP Attacks

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

UDP – User Datagram Protocol

- Basically a minimum layer 4 when one just wants to send raw IP packets
 - Header is just source and destination port numbers, length, and checksum

0	16	<u>31</u>
Source port	Dest. port	
Length	Checksum	

- Used for a wide variety of purposes, mostly when minimum overhead is desired
 - Security considerations most often **not** a priority
- Connection-less nature of UDP makes applications vulnerable to IP address spoofing

www.geant.org

16

UDP Amplification Attacks

- Same principle as with IP/ICMP flood attacks
 - I.e. volumetric attack against bandwidth and/or packet switching capacity
- In most of today's cases, makes use of amplifiers/reflectors
 - I.e. attacker uses victims IP address as query source address (spoofing)
 - Vulnerable service answers (reflecting), hiding attackers IP address in the process
 - Reply of the service is usually much bigger than the query → bandwidth amplification
 - Bandwidth Amplification Factor (BAF)
 - Sometimes, service sends out multiple packets for one query packet → packet per second (pps) amplification
 - Packet Amplification Factor (PAF)

UDP Amplifiers (and how to find them)

Protocol	BAF	PAF	Port No (udp)	Scenario/Command
DNS auth. NS	54.6	2.08	53	dig @ target +edns +ignore com ANY
DNS open res.	28.7	1.32	53	dig @ <i>target</i> +edns +ignore com ANY
mDNS	2 - 10		5353	dig @target -p 5353 +ignore +noedns wpad
NTP	556.9	3.84	123	ntpdc –nc monlist target
SNMPv2	6.3	1.00	161	<pre>snmpbulkget -v2c -c public target 1.3</pre>
NetBIOS NS	3.8	1.00	137	nmblookup –A <i>target</i>
SSDP	30.8	9.92	1900	M-SEARCH request
cLDAP	56 - 70		389	
TFTP	60		69	tftp command trying to download well known files
Memcached	10K - 51K		11211	
WS-Discovery	10 - 500		3702	

Source: https://us-cert.cisa.gov/ncas/alerts/TA14-017A

B23

UDP Amplifiers: P2P, Games & Other

Protocol	BAF	PAF	Port No (udp)	Scenario/Cmd
BitTorrent (P2P)	3.8	1.58	6671	File search
Kademlia (P2P)	16.3	1.00	varies	Peer list exchange
Quake (Game)	63.9	1.01	27950+	Server info exchange
Steam (Game)	5.5	1.12	27015, 27005	Server info exchange
CharGen	358.8	1.00	19	Character gen. request
Quote of the Day	140.3	1.00	17	Quote request
RIPv1	131.24		520	Malformed request
Portmap (RPCbind)	7 - 28		111	Malformed request
ARMS (Apple Net Assistant)	35.5	2.00	3283	
Microsoft RDP	85		3389	

Source: https://us-cert.cisa.gov/ncas/alerts/TA14-017A

18

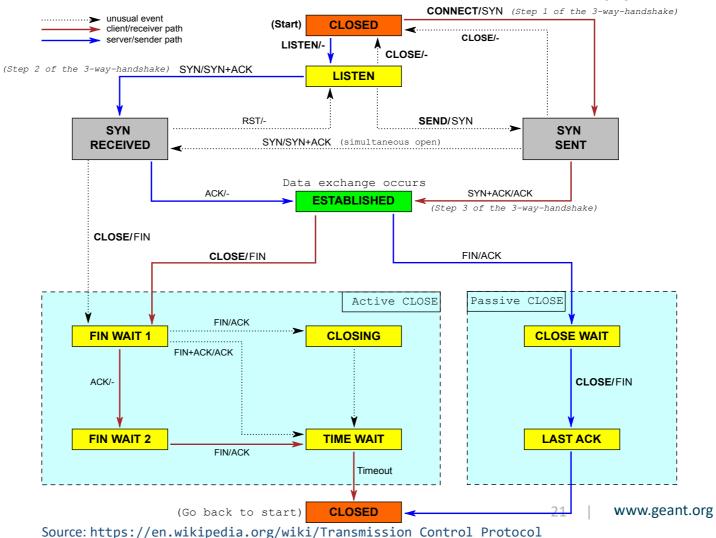
B23

UDP Fragmentation (Attacks)

- Seen as fragmented packets with UDP source and destination port 0
- An artefact of buggy/stateless packet counting/reporting
 - 2nd and later fragments don't carry the UDP header
 - Probe only sees IP header with IP protocol number 17 (UDP)
 - Without UDP header to look for port numbers, port 0 is reported
 - Unless probe is smart enough to re-assemble fragments
 - Would require memory for fragment storage → DoS vulnerability in the probe
 - Can't be done in hardware/at wire speed

TCP Attacks

www.geant.org

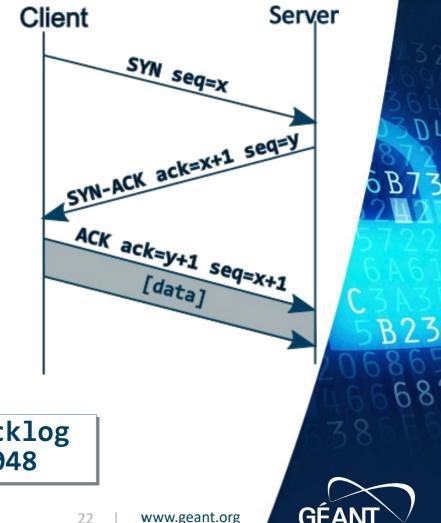

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

20

TCP: Transport Control Protocol

• Layer 4 Protocol for a bi-directional stream between applications

- State of a TCP connection is modelled through a finite automaton, aka state-machine
- Weaknesses in the automaton are exploited by attackers



B23

TCP Attacks: SYN-Flood

- One of the oldest and still used attacks
- Exploits memory limit for the TCP 3-way handshake
 - Server has to keep state (seq & ack numbers, options, src/dst ip address & ports)
 - Attacker sends initial TCP SYN packet but never replies to SYN-ACK from server
 - Open port at victim IP address needed
 - Source IP address must not reply for timeout
 - Leaves connection in SYN RECEIVED state
 - Total timeout = timeout per SYN-ACK * # resends

> sysctl net.ipv4.tcp_max_syn_backlog net.ipv4.tcp_max_syn_backlog = 2048

TCP Attacks: *SYN-Flood* **Detection**

- Server side detection
 - Very high number of sockets in SYN-RECV state
- Client side detection:
 - Server doesn't respond / high number of connection failures
- Simulate: hping3 -S -p Port Target (--flood)
 - Only little bandwidth is needed
- Self-inflicted SYN-Floods
 - Routing misconfiguration drops SYN-ACK packet on the way back to clients
- How to tell apart from high traffic load
 - Server also has high number of normal (ESTAB) connections

TCP Attacks: *Syn-Flood* Example

DEUTSCHES FORSCHUNGSNET

ER

> ss -anto					
State	Recv-Q	Send-Q	Local Address:Port	Peer Address:Port	
	0	100	0.0.0.0.22		
LISTEN	0	128	0.0.0.0:22	0.0.0.0:*	
SYN-RECV	0	0	XX.XX.245.77:22	ZZ.ZZZ.173.2:30487	<pre>timer:(on,10sec,7)</pre>
FIN-WAIT-1	0	1	XX.XX.245.77:22	ZZ.ZZZ.173.2:50289	timer:(on,17sec,6)
ESTAB	0	0	XX.XX.245.77:22	ZZ.ZZZ.173.21:13933	timer:
(keepalive,	119min,0)				
LISTEN	0	128	*:80	* *	
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3166	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3148	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	0	0 0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3170	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3134	timer:(on,12sec,4)
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3177	timer:(on,12sec,4)
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3159	timer:(on,12sec,4)
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3181	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3141	timer:(on,12sec,4)
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3191	<pre>timer:(on,12sec,4)</pre>
ESTAB	0	36	[2001:xxxx:xxx:1001::2002]:22		timer:(on,240ms,0)
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3169	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3174	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3136	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	0	Õ	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3188	<pre>timer:(on,12sec,4)</pre>
SYN-RECV	Ő	Õ	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3137	timer:(on,12sec,4)
SYN-RECV	õ	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3186	timer:(on,12sec,4)
SYN-RECV	0	0	[::ffff:XX.XX.245.77]:80	[::ffff:YYY.YYY.208.44]:3153	<pre>timer:(on,12sec,4)</pre>
[]	U	0	[]		cimer . (011,123cc)4)

TCP Attacks: SYN ACK Reflection

- Reflection attack that was gaining popularity in 2019
 - TCP was thought to give not enough amplification for DoS attacks
- Perceived as a SYN-ACK flood at the victims host
- Attacker TCP SYN packets to the reflector host with victim's (spoofed) IP address
 - Open port needed
- Reflector sends SYN-ACK packet to victim
- If victim does not respond, will repeat SYN-ACK several times
 - Usually 2-5 times, but vulnerable hosts will re-try up to 255 times
 - See net.ipv4.tcp_synack_retries (Linux)
- Targeted resource is the networks packet switching capacity (pps)

Application Layer Attacks

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

26

Application Attacks: *Slowloris*

- Attack directed against web servers
 - Destination port 80, 443, etc.
 - Exhausting number of open HTTP sessions
 - TCP connections

Slow loris primates

David Haring / Duke Lemur Center

- System will accept no new HTTP connections, hangs
- Attacker opens a number of TCP connections to a web server
- Each HTTP request is sent in small TCP packets, very slowly
 - Very low bandwidth usage
- Simulate
 - PyLoris: Supports connections through SOCKS and TOR
 - SlowHTTPTest: DDoS test tool for web servers

R73

Application Attacks: *Slowloris Packet Capture*

DEUTSCHES EORSCHUNGSNET

No.	Time	Source		Destination		Protocol Le	enath Info		+			
_		2001:	:2::3	2001:	5:1001::2002	TCP	94 37810 → 80	[SYN] Seq=0 N	Vin=64800 Len			
	4 0.000036149	2001:	f:1001::2002	2001:	:2::3	ТСР	94 80 → 37810					
	10 0.012602724	2001:	:2::3	2001:	f:1001::2002	ТСР	86 37810 → 80	[ACK] Seq=1 /	Ack=1 Win=648			
	15 0.016427897	2001:	_:2::3	2001:	S+1001++2002	TCD	<u> 112 27910 - 90</u>		an-1 Ack-1 Wi			
	16 0.016434907	2001:	F:1001::2002	2001:	GET / HTTP/1.	.1						
-	2978 10.286989996	2001:	:2::3	2001:	Host: www.							
	2979 10.286997626	2001:	f:1001::2002	2001:						AppleWebKit/53		
	3586 11.288235335	2001:	F:1001::2002	2001:						ntosh; Intel Ma fari/537.75.14		2)
	3587 11.288239555	2001:	f:1001::2002	2001:	Referer: TEST			CCROJ VEISI	5177.0.5 54	ai 1/00/.70.14		
	3599 11.300715051	2001:	:2::3	2001:	X-f7bD1UtXWom							
	3603 11.301575321	2001:	:2::3	2001:	HTTP/1.1 408							
_	3604 11.301590960	2001:	F:1001::2002	2001:	Date: Tue, 02		11:11:05 GMT					
					Server: Apach Content-Lengt							
					Connection: o							
					Content-Type:	: text/html	; charset=iso	-8859-1				
- Er	ame 15: 412 bytes o	n wire (3296	nits) 412 bytes c	antured (3296 bit								
	hernet II, Src: Ari				<pre><!DOCTYPE HTM <html> <head></head></pre>	ML PUBLIC "	-//IETF//DTD	HTML 2.0//E	V ">			
	ternet Protocol Ver			2::3, Dst: 2001:	<title>408 Re</td><td>equest Time</td><td>out</title>							
	ansmission Control				<body></body>		.00147 111105					
· · ·				0, 0, 00, 00, 1,	<h1>Request 1</h1>		>					
							ng for the HT	TP request	from the cl:	lent.		
0000	20 00 22 62 40 06	00 Ed 00 00	7f d5 96 dd 60 01	0.#cI]	<td>L></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	L>						
001			7f d5 86 dd 60 01 07 14 21 20 00 02		College Delegte d'Orga	Delet & Derede						
	00 00 00 00 00 03				2 Client Pakete, 1 Serve	er Paket, 1 Runde.						
	00 00 00 00 20 02 b3 fe 80 18 01 fb				Gesamte Verbind	lung (746 byte	s)	✓ Daten	anzeigen als	ASCII	✓ Streat	im 1
0 7			01 01 00 04 00 01									
	siowions.peaping				Suchen:						Nächs	stes suche
					🛱 Hilfe		Diag	en Stream filter	n Drucken	Speichern als	Zurück	Schließe
							Dies	en Stream niter	n Drucken	Speichern als	ZUFUCK V	Schliebe

B23

68

Application Attacks: *Slowloris* Variants/Derivates

- SlowDroid: Uses high number of spaces instead of HTTP (GET) requests
- *SlowRead:* Accept server response very slowly (TCP window size 0)
 - Forcing server to send response in very small packets, with a high number of seconds in between
- *Slow HTTP Post:* with HTTP POST requests
- *R-U-Dead-Yet (R.U.D.Y.):* Filling out HTTP forms very slowly (POST requests)
 - Sending chunks of the POST with a high number of seconds in between
- THC-SSL-DoS: Immediately request re-negotiation after SSL handshake
- #RefRef: Exploits SQL injection vulnerability to execute recursive SQL statements

B23

68:

Famous Application Attacks: *Billion Laughs*

- Targeted at XML parser code in web apps or elsewhere
- Memory exhaustion while parsing specially crafted XML files
 - CPU load as secondary effect
 - Aka XML Bomb, similar principle as in Fork Bombs, Zip Bombs, etc.
 - Works with other XML based formats too, like YAML

```
<?xml version="1.0"?>
                                                    <!DOCTYPE lolz</pre>
Example:
                                                       <!ENTITY lol "lol">
                                                       <!ELEMENT lolz (#PCDATA)>
                                                       <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol
                                                       <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;</pre>
                                                                                                                                                                                                                                                                                                                                             R73
                                                       <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;</pre>
                                                       <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;</pre>
                                                       <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;</pre>
                                                                                                                                                                                                                                                                                                                                                  68
                                                       <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;</pre>
                                                       <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;</pre>
                                                       <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;</pre>
                                                    <lolz>&lol9;</lolz>
                                                                                                                                                                                                                                                                   www.geant.org
                                                                                                                                                                                                                                                30
```

Application Attacks: *ReDoS*

- Regular Expression Denial-of-Service
- Attacker sends a specially crafted message
 - evil RegExes e. g. grouping with repetition, like ([a-zA-Z]+)*
- Exploits weaknesses in regular expression library
- Exhausting/consume CPU on server when
 - Server regular expression is run against attacker supplied input strings
 - Server executes a regular expression supplied by the attacker

Application Attacks: *Hash Collision DoS*

- Exploiting Collisions in applications hash tables
 - Not cryptographic hash collisions
- Web application frameworks often use hash tables to index POST session parameters
 - Dealing with collisions in hash tables is computationally (much) more CPU intensive than lookups
- Attacker sends a specially crafted POST request with many specially crafted parameters
 - Built in a way that causes hash collisions
- Attack slows down responses, exhausting CPU
 - Vulnerabilities in hash-table code may also allow code execution in the application

B23

33 | www.geant.org

B23

Attack Tools: LOIC & HOIC

- Low Orbit Ion Cannon
- Developed as a network stress test tool, modified and released as open-source by "Anonymous" group
- Flood attacks with TCP, UDP, or HTTP packets
- "Hive Mind Mode" connects to IRC channel for remote control/coordination

- High Orbit Ion Cannon
- Same group as LOIC
- Used for HTTP request floods
- "booster" (.hoic) files contain list of URLs, referrers, user agents, and HTTP headers, used randomly to avoid IPS filters
- No spoofing of source addresses

What have you learned?

- Denial-of-Service attacks come in many colours
 - And they keep changing and evolving
- How some of the most "famous" DDoS attacks work technically
- Patching will help against vulnerability-based attacks
 - Ping-of-Death, LAND, Teardrop, etc.
- Question 1: If you can't feel the impact of a DoS attack, was it real?
- Question 2: How can we discriminate attacks from self-inflicted Denial-of-Service?
- \rightarrow Next session: DDoS Detection

Thank you

Any questions?

Next course: **DDoS Detection** 15th of February 2021 www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

References:

- D-SCAP: DDoS Attack Traffic Generation Using Scapy Framework https://link.springer.com/chapter/10.1007%2F978-981-13-1882-5_19
- Attacks to be performed using Hping3 and Scapy Packet Crafting https://hackers-factory.com/2021/01/01/attacks-to-be-performedusing-hping3-and-scapy/
- Ping-of-Death, https://insecure.org/sploits/ping-o-death.html
- CISA Alert (TA14-017A) UDP-Based Amplification Attacks: https://uscert.cisa.gov/ncas/alerts/TA14-017A
- Shadowserver foundation network reporting, https://www.shadowserver.org/what-we-do/network-reporting/
- Netscout: A Call to ARMS: Apple Remote Management Service UDP Reflection/ Amplification DDoS Attacks: https://www.netscout.com/blog/asert/callarms-apple-remote-management-service-udp

References:

- Cloudflare cLDAP Threat Advisory: https://www.akamai.com/de/ de/multimedia/documents/state-of-the-internet/cldapthreat-advisory.pdf
- Cloudflare blog about UDP reflection attacks: https://blog.cloudflare.com/reflections-onreflections
- OWASP ReDoS page: https://owasp.org/www-community/attacks/Regular_expre ssion_Denial_of_Service_-_ReDoS
- Russ Cox: "Regular Expression Matching in the Wild": https://swtch.com/~rsc/regexp/regexp3.html

Tools & Packet captures

- Packet Traces (Lab): https://rickfreyconsulting.com/downloads/
- hping3 (alpha) http://www.hping.org/hping3.html
- Nping (part of nmap): https://nmap.org/nping/
- Scapy: https://scapy.net/
 - Ufonet https://github.com/epsylon/ufonet
- SlowHTTPTest: https://github.com/shekyan/slowhttptest
- PyLoris: https://sourceforge.net/projects/pyloris/
- THC-SSL-DoS: https://thehackerschoice.wordpress.com/2011/10/24/thc-ssldos/,
 - Kali source mirror: https://gitlab.com/kalilinux/packages/thcssl-dos

