

Vulnerability Management

Introduction to Processes and Standards

Klaus Möller WP8-T1

Webinar, 27th of May 2021

Public

www.geant.org

The Road Ahead: Vulnerability Management

- Processes & Standards 27th of May
 - Processes: ISO 29147 & 30111
 - Standards: CVE, CVSS & CPE
- Vulnerability Information Dissemination 8th of June
 - How to get and distribute vulnerability information in your organization
- Patch Management 11th of June
 - How to keep track and fix vulnerabilities

The Road Ahead: Finding Vulnerabilities I

- Local Vulnerability Scanning 28th of June
 - Finding vulnerabilities from inside
- Network Vulnerability Scanning 30th of June
 - How to plan and conduct network scans
 - Tools: Nmap, OpenVAS
- Penetration Tests 5th of July
 - Why, when and how
 - Examples of pen-test tools: ZAP, Metasploit

The Road Ahead: Finding Vulnerabilities II

- Code Audits 14th of July
 - How to increase the quality of your code
- Vulnerability Disclosure 16th of July
 - How to properly deal with found vulnerabilities
- Breach and Attack Simulation 19th of July
 - What would happen if vulnerabilities in your organization are exploited

What we will cover today

- What are vulnerabilities?
- Vulnerability management processes
 - ISO 29147:2018 Vulnerability disclosure
 - ISO 30111:2019 Vulnerability handling process
- Standards to assess vulnerabilities and their impacts
 - CVE
 - CVSS
 - CPE
 - Etc.

Source: MITRE

What is a Vulnerability?

- ENISA: "The existence of a **weakness**, **design**, or **implementation error** that can lead to an unexpected, undesirable event compromising the security of the computer system, network, application, or protocol involved."
- ISO/IEC 27005: "A weakness of an **asset** or group of assets that can be **exploited** by one or more **threats**, where an asset is anything that has value to the organization, its business operations and their continuity, including information resources that support the organization's mission."
- IETF RFC 4949: "A *flaw* or *weakness* in a system's *design*, *implementation*, or *operation and management* that could be exploited to violate the system's security policy."

R73

Vulnerabilities & Risk

DD

681

Design Error

- Fundamental flaws in protocols or software design
- Typical cases
 - Clear text authentication in protocols (telnet, ftp, ...)
 - Weak or outdated encryption or hash algorithms: MD3/4/5, SHA-1, DES, ...
 - Flawed authentication protocols: WEP, WPA-2/3
 - Reliance on IP addresses for authentication
- Most difficult to fix requires re-design of protocols or algorithms
- Fix usually breaks compatibility
- Systems left vulnerable in transition period (downgrade attacks)

Implementation Error

- Developer has made an error in designing or programming the software
 - No input validation: Buffer overflows, Format string bugs, XSS, SQL-Injection etc.
 - Broken access control: Session fixation, running processes with wrong privileges, etc.
 - Improper error handling
 - Race conditions
 - And many more ...
- Fixing requires analysis of the vulnerable code
- Requires testing of the corrected code
 - Open Source: Anybody can contribute (but who does?)
- Needs to be deployed in form of software upgrades (patches)
- To be conducted by developers (and system administrators)

Configuration Error (aka Weakness)

- A mistake in software configuration
 - By system administrator or user
- Like
 - Open accounts with no, known, or weak passwords
 - Active content enabled in web-browser or e-mail client
 - Unneeded network services: RPC interfaces, database mgmt., etc.
 - Disabled security functions: firewall, anti-virus scanner, auto-update, etc.
- Usually easy to fix by correcting the flawed configuration
 - Detection process somewhat different from other vulnerability types
- Can be done in the field, no outside dependency

Hardware Error

- Special case fix typically requires replacing the hardware
- Replacement problems
 - Devices at hard to reach places (field sensors, inside machines, etc.)
 - Costs to replace expensive hardware or large number of cheap devices
 - Time needed to replace large number of deployed devices
- Often errors in hardware design
 - Re-design needed before new hardware can be built
 - Hardware upgrade cycles are much longer than software (re-tooling)
- Software patches to hardware vulnerabilities are workarounds
 - Often with serious performance impact
 - Often no complete mitigation

Operational Errors

- Flaws in the way operations are organized or carried out
- Typical flaws:
 - Blindly trusting phone calls
 - Blindly trusting web-links in e-mails or messages
 - Unsupervised (external) personnel in security areas
 - Unauthorized personnel in security areas
- Typically exploited by social engineering
 - Sometimes without any attack on hard- or software
- Fixing can be difficult changing human behavior is tricky

Vulnerability handling vs. disclosure

Develop vulnerability Develop vulnerability disclosure policy **Julnerability** handling policy and operational framework **Develop capability to** receive and publish vulnerability information **Receive vulnerability Identify vulnerability** report from external source from internal source handling Acknowledge receipt **Verify report** Vulnerability No Inform reporter verified? process Yes **Develop and deploy Publish advisory** remediation Engage in post-remediation activities DFN

disclosure $\mathbf{0}$ J **Vulnerability** 29 **ISO/IE**

DELITSCHES EORSCHUNGSNE

ERT

13

SO/IEC

3011

. .

2019

5B7

B23

68'

GEA

What will be covered in the course

Vulnerability handling policy (ISO 30111)

- Define and clarify organizations intentions when investigating and remediating vulnerabilities
- Internal part
 - Who is responsible, safeguards against premature disclosure
- Public part
 - How the organization will interact with external vulnerability finders
- How to process and resolve potential vulnerabilities
 - Investigation is the vulnerability real, what are the consequences, etc.
 - Triage prioritize handling of vulnerabilities
 - Remediation how to deal with the found & confirmed vulnerabilities

Operational framework (ISO 30111)

- Covers all operational aspects (besides engineering)
- Defines a role to decide on vulnerabilities internally
 - And who assumes that role
- Defines a point of contact to the outside
 - E-mail: security@... (typically)
- Remediation how to address a vulnerability
 - Patch, fix, upgrade, configuration or documentation change
 - Compare TARA principle

Related Discussion: Risk Management Strategies - TARA

Typical Vulnerability Handling Timescale

- Verify Report: Days, given good quality initial report
 - Reproduce/understand bug, identify affected products
- Fix: Days, unless there's a fundamental problem
 - Uses information from comprehensive evaluation
 - Look for workarounds as well as bugfixes
 - Check related code and design process for the same bug (ideally)
 - Test: Weeks
 - Does it fix all problems, on all products?
 - Many different versions, plattforms, languages to check
 - Does it break anything else? Start again if so
 - Release, dependent on schedule/urgency

Develop Remediation

The Problem with Vulnerability Naming

- Vulnerabilities are referenced in many different contexts/products
- Are they talking about the same vulnerability?
 - Is "a vulnerability in the Linux x.y.z kernel network stack" the same as in "Linux kernel a.b network code problem"?
 - Compare names given to malware by AV vendors
- Or are they different?

19

Standards: Common Vulnerabilities and Exposures

- Idea: Give each vulnerability a unique identifier
- I.e. the CVE-Identifier: CVE-YYYY-NNNNN
 - Also called CVE-Name, CVE-Number, or CVE-ID
- Attached to the CVE-Identifier is additional information
 - (Technical) Details, References
 - Severity
 - Affected platforms
- All in one central repository
- CVE-IDs are assigned by CVE Numbering Authorities (CNAs)
 - If you find a vulnerability, ask your CSIRT or the vendor's PSIRT
 - More about this in another webinar

Example: CVE-2016-1234

Standards: Common Vulnerability Scoring System

- Measure for the severity of a vulnerability (Score)
 - 0 (None) least severe
 - 0.1-3.9 (Low)
 - 4.0-6.9 (Medium)
 - 7.0-8.9 (High)
 - 9.0-10.0 (Critical) most severe
- More precisely: Three scores
 - Base
 - Temporal changes over time
 - Environmental depends on the organizations setup
- Plus context information about exploitability (Vector)

Standards: Common Platform Enumeration

- Question: What is affected by a vulnerability?
- To answer we need "... a standardized method of describing and identifying classes of applications, operating systems, and hardware devices ..."
- A series of XML schemata that define
 - The structure of names for individual platforms (Naming)
 - "... the logical structure of Well-formed Names (WFNs)"
 - A standard to combine multiple WFNs with logical expressions (i. e. AND, OR, NOT) so that multiple products and platforms can be matches (Applicability Language)
 - Rules to parse and match (compare) WFNs (Name Matching)
 - A repository of registered names (Dictionary) each entry identifying a single class of IT product
- What if a vulnerability is found a product that doesn't have a CPE (yet)?

CPE in Practice: GNU C Library

Multiple WFNs are grouped with logical operators (i. e. "or", "not")
cpe:2.3:a:gnu:gLibc:2.2.3:*:*:*:** OR
cpe:2.3:a:fedoraproject:fedora:23:*:*:*:*:*:*:*

R73

681

CPE Example: CVE-2016-1234

Up to

2.24

(excluding)

Known Affected Software

Configurations Switch to CPE 2.2

Configuration 1 (<u>hide</u>)

雙 cpe:2.3:a:gnu:glibc:*:*:*:*:*:*:*:*

Hide Matching CPE(s)

- cpe:2.3:a:gnu:glibc:-:*:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:-:*:*:*:*:x64:*
- cpe:2.3:a:gnu:glibc:0.1:*:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:0.4:*:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:0.4.1:*:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:0.5:*:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:0.6:*:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:1.00:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:1.01:*:*:*:*:*
- cpe:2.3:a:gnu:glibc:1.02:*:*:*:*:*:*

Showing 10 of 117 matching CPE(s) for the range. View All CPEs here

DFN.

Configuration 2 (<u>hide</u>)

♥ cpe:2.3:0:opensuse:leap:42.1:*:*:*:*:*:*

Hide Matching CPE(s)

• cpe:2.3:o:opensuse:leap:42.1:*:*:*:*:*:*

✤ cpe:2.3:o:opensuse:opensuse:13.2:*:*:*:*:*:*:*

Hide Matching CPE(s)

• cpe:2.3:o:opensuse:opensuse:13.2:*:*:*:*:*

Configuration 3 (<u>hide</u>)

Hide Matching CPE(s) <

• cpe:2.3:o:fedoraproject:fedora:23:*:*:*:*:*:*

♥ Denotes Vulnerable Software

Are we missing a CPE here? Please let us know.

B23

68'

CPE Example: nmap & Linux

<pre># nmap -0 localhost</pre>	common platform enumeration
Starting Nmap 7.91 (https://nmap.org) at 2021-05-17 17:27 CEST	
Nmap scan report for localhost (127.0.0.1)	
Host is up (0.000030s latency).	
Other addresses for localhost (not scanned): ::1	
Not shown: 996 closed ports	
PORT STATE SERVICE	
22/tcp open ssh	
25/tcp open smtp	
631/tcp open ipp	Č
6667/tcp open irc	$\circ B$
Device type: general purpose	
Running: Linux 2.6.X	> cat /etc/os-release
OS CPE: cpe:/o:linux:linux_kernel:2.6.32	NAME="openSUSE Leap"
OS details: Linux 2.6.32	VERSION="15.2"
Network Distance: 0 hops	ID="opensuse-leap"
OC detection non Conned Dlesse nonent on incom	ID_LIKE="suse opensuse"
US detection performed. Please report any incori	VERSION_ID="15.2"
nttps://nmap.org/submit/ .	PRETTY_NAME="openSUSE Leap 15.2"
Nmap done: I IP address (I nost up) scanned in .	ANSI_COLOR="0;32"
	CPE_NAME="cpe:/o:opensuse:leap:15.2"
	BUG_REPORT_URL="https://bugs.opensuse.org"
	HOME_URL="https://www.opensuse.org/"

More Standards

- Building open standards to automatically process incoming vulnerability information
 - According to your strategy/policy
- Goal: Systems are automatically (securely) configured and/or patched
 - Common Configuration Enumeration (CCE)
 - Common Weaknesses Enumeration (CWE)
 - Security Content Automation Protocol (SCAP)
 - Asset Identification, Asset Reporting Format (ARF)
 - Open Vulnerability Assessment Language (OVAL)
 - Open Checklist Interactive Language (OCIL)
 - Trust Model for Security Automation Data (TMSAD)
 - Extensible Configuration Checklist Description Format (XCCDF)
 - Software Identification (SWID)
 - Asset Summary Reporting (ASR)

What have you learned?

- Two main standards: ISO 29147 and ISO 30111
 - Vulnerability disclosure
 - Vulnerability handling
- Open standards making vulnerability information machine readable
 - CVE Vulnerability identifier
 - CVSS severity score
 - CPE affected platform
- Next webinar: human readable vulnerability information security advisories

Thank you

Any questions?

Next webinar: *Vulnerability Information Dissemination* 8th of June 2021 www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

References:

- CVE Specification: https://cve.mitre.org/
- National vulnerability database: https://nvd.nist.gov/vuln/
- CPE Specification: https://cpe.mitre.org/specification/
- CPE Dictionary: https://nvd.nist.gov/products/cpe
- FIRST CVSS page: https://www.first.org/cvss/
- FIRST CVSS course: https://www.first.org/education/trainings
- ISO/IEC 27005:2018: "Information technology Security techniques Information security risk management"
- ISO/IEC 29147:2018: "Information technology Security techniques Vulnerability disclosure"
- ISO/IEC 30111:2019: "Information technology Security techniques Vulnerability handling process"
- ENISA Glossary: https://www.enisa.europa.eu/topics/threat-risk-management/riskmanagement/current-risk/risk-management-inventory/glossary#G52
- RFC 4949: "Internet Security Glossary, Version 2", https://tools.ietf.org/html/rfc4949

