
www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 1

Code Audits

How to increase the quality of the code

www.geant.org

Stefan Kelm
WP8-T1

Webinar, 14th of July 2021

Public

1 |

www.geant.orgwww.geant.org2 |

Finding Vulnerabilities II - Looking into code

2 |

• Code Audits
– How to increase the quality of the code

• Vulnerability Disclosure
– How to deal with found vulnerabilities properly

• Breach and Attack Simulation
– What happens if one or more vulnerabilities in your

organisation are exploited

www.geant.orgwww.geant.org3 |

• Code Audits

– What are code audits?

– The different classes of audit tools

– A closer look at static analyzers
● SonarQube demo

– Taking things further
● Continuous integration
● SDLC

– Recommendations

What we will cover today

3 |

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 4

Introduction

www.geant.org
4 |

www.geant.orgwww.geant.org5 |

Let’s start with a few definitions…

● Auditing
– “Auditing an application is the process

of analyzing application code (in
source or binary form) to uncover
vulnerabilities that attackers might
exploit. By going through this process,
you can identify and close security
holes that would otherwise put
sensitive data and business resources
at unnecessary risk.”

www.geant.orgwww.geant.org6 |

Source Code Security Analyzers

● According to NIST
– “For our purposes, a source code security analyzer examines

source code to detect and report weaknesses that can lead to
security vulnerabilities.”

– “They are one of the last lines of defense to eliminate software
vulnerabilities during development or after deployment.”

– “Byte Code Scanners and Binary Code Scanners have
similarities, but work at lower levels.”

● NIST Special Publication 500-268
– Source Code Security Analysis Tool Functional Specification

Version 1.1

www.geant.orgwww.geant.org7 |

Security Testing Tools

● According to OWASP
– SAST: Static Application Security Testing Tools

● White box: examine the source code
– DAST: Dynamic Application Security Testing Tools

● Black box: primarily for web apps (e.g., “fuzzer”)
– IAST: Interactive Application Security Testing Tools

● “best of both worlds”
– OSS: Open Source Software Security Tools

● Keeping your libraries/dependencies updated
– Static Code Quality Tools

● “Quality has a significant correlation to security.”

• Automated vs. manual

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 8

We will be focussing on how to use
static tools on our own code today

www.geant.org
8 |

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 9

Caveat
auditing == testing == examining == analysing ==
analyzing == reviewing == scanning == …

(at least for this talk ;-))

www.geant.org
9 |

www.geant.orgwww.geant.org10 |

SAST: Strength & Weaknesses (Source: OWASP)

● Strengths
– Scales well

● can be run on lots of software, and can be run repeatedly
(as with nightly builds or continuous integration)

– Useful for things that such tools can automatically find with
high confidence

● such as buffer overflows, SQL Injection Flaws, …
– Output is good for developers

● highlights the precise source files, line numbers, and even
subsections of lines that are affected

www.geant.orgwww.geant.org11 |

SAST: Strength & Weaknesses (Source: OWASP)

● Weaknesses
– Many types of security vulnerabilities are difficult to find

automatically (“runtime issues”)
● such as authentication problems, access control issues,

insecure use of cryptography, etc.
● frequently can’t find configuration issues, since they are

not represented in the code
– High numbers of false positives
– Difficult to ‘prove’ that an identified security issue is an

actual vulnerability

www.geant.orgwww.geant.org12 |

But before we start: advertisement I

● Have you ever heard of GÉANT’s WP9T2 services? ;-)
– https://wiki.geant.org/display/GSD
– https://wiki.geant.org/display/GSD/Software+Reviews

www.geant.orgwww.geant.org13 |

www.geant.orgwww.geant.org14 |

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 15

What can static code analysis do for me ?

→ Let’s have a look at SonarQube

www.geant.org
15 |

www.geant.orgwww.geant.org16 |

SonarQube

● A web-based open-source platform used to measure and analyse the quality of source code

● Metrics on the following categories
– Reliability

● Bugs indicate that there something wrong in the code, even if the code currently works, it is
broken

– Security
● Vulnerabilities include those from OWASP Top 10 and SANS Top 25
● Security hotspots are security-sensitive pieces of code that need to be manually reviewed

– Maintainability
● Debt estimates time required to fix all issues
● Code smells indicate that the code in question does not satisfy the basic design, implementation

and quality principles that may [...] increase the risks
– Coverage
– Duplications
– Complexity

www.geant.orgwww.geant.org17 |

SonarQube

● 5400+ static analysis rules across 27 programming languages

● Quality Profiles are sets of rules used by SQ to classify and describe issues
– Whenever a rule is violated an issue is raised
– Each language comes with its own Quality Profile (which can be changed)

● Quality Gates are an instrument to set a policy for shipping code to production
– set(s) of conditions against which projects are measured, e.g.:

● No Blocker or Critical issues on new code
● Security Rating worse than B
● Technical Debt greater than 1d

● Lots of plugins to even enhance the functionality

● There’s a free version (“community edition”) available :-)

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 18

Demo time

www.geant.org
18 |

www.geant.orgwww.geant.org19 |

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 20

Analysing source code is all good
but what you really want is…

www.geant.org
20 |

www.geant.orgwww.geant.org21 |

CI/CD integration

● According to redhat.com

– “CI/CD is a method to frequently deliver apps to customers by introducing automation
into the stages of app development.”

– “The main concepts attributed to CI/CD are continuous integration, continuous delivery,
and continuous deployment. CI/CD is a solution to the problems integrating new code can
cause for development and operations teams (AKA "integration hell").”

– “Specifically, CI/CD introduces ongoing automation and continuous monitoring
throughout the lifecycle of apps, from integration and testing phases to delivery and
deployment.”

● Scan the source code itself (SAST) during the development
and/or as part of the CI/CD pipeline

– Integration of testing tools into development frameworks
● GitLab, GitHub, Bitbucket, Azure DevOps, Jenkins, …
● SonarQube and many other SAST tools

www.geant.orgwww.geant.org22 |

GitLab

www.geant.orgwww.geant.org23 |

GitLab

www.geant.orgwww.geant.org24 |

GitLab

www.geant.orgwww.geant.org25 |

Bitbucket

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 26

CI/CD integration is fine!
What you really, really want, though…

www.geant.org
26 |

www.geant.orgwww.geant.org27 |

One step further: SDLC

● Integration of tools/scanners into your (S)SDLC processes,
especially at the early development stages

● Do this in terms of
– periodic/scheduled scanning
– build-triggered scanning
– manual scanning

● Another caveat: is it SDLC or SSDLC? ;-)
– Systems Development Life Cycle
– Software Development Life Cycle
– Secure Development Life Cycle
– Secure Software Development Life Cycle

www.geant.orgwww.geant.org28 |

Integration of tools/scanners into SDLC

● How to chose the right scanner – does it…
– report issues directly to (ticketing/bug tracking) systems such as JIRA, TFS,

Bugzilla, OTRS, Trac, … ?
– support CLI/API/plugin-based scanning through external CI/CD software

(e.g., Jenkins) ?
● (this is how I did it for the SonarQube demo)

– analyze and present diffs between scans (gap analysis) ?
– allow for extending the scanner with custom plugins, tests, and scripts ?
– …

www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 29

Wrapping up…

www.geant.org
29 |

www.geant.orgwww.geant.org30 |

General observations and recommendations

● Automated security scanners are very good in producing lots of results
– Prioritize the results and make sure that the receivers are not overwhelmed

with issues
● A nice approach is to focus on a specific topic (e.g. input validation or

updating dependencies) and first fix issues in that area before moving on to
the next topic (remember SQ’s “Security Category”?)

● Another approach is to only send the “most critical” issues
– Weeding out false positives from actual issues will require time and effort

● Do not underestimate the time required to configure automated scanners
correctly!

● Don't trust vendors who claim their scanner will find all security issues in your
application
– There are vulnerabilities that no automated scanner can find

www.geant.orgwww.geant.org31 |

General observations and recommendations

● Humans are needed with or without (static) analysis tools
– less false positives/false negatives
– may have insight into design and architecture
– only a human who understands the application logic and its context can do

a full security test

● Automated scanning cannot replace manual testing …

● … however, tools can cover more code in less time than a human
● faster
● broader
● repeatable
● …

www.geant.orgwww.geant.org32 |

General observations and recommendations

● If you have in-house developers try to increase awareness and get them on-
board
– Make sure to not overwhelm them with too many security issues and/or false positives

– This allows for developers to also take this moment to learn more about a security topic

– It is usually more difficult for them to motivate themselves when a whole range of different security
issues need to be resolved at the same time

– Develop test cases

– Have a zero bug policy on your own code!

● Make code audits part of your risk management
– the more high risk a system is the more manual testing should be done

● Consider to also scan for (hard-coded) credentials as part of the CI/CD pipeline
– e.g., test accounts are being forgotten fairly often…
– Especially before pushing code to github, etc.

www.geant.orgwww.geant.org33 |

What have you learned?

● Code audits are Really Cool
– There’s quite a few useful tools out there (check the references)

● Manual code audits are important and indeed needed but you
want to automate things as much as possible
– CI/CD integration is vital

● SDLC: the earlier you think about security, the better

www.geant.orgwww.geant.org34 |

What was not covered today?

● Code Auditing Strategies
– Code comprehension (CC) strategies

– Candidate point (CP) strategies

– Design generalization (DG) strategies

● Classifying Vulnerabilities
– Design vulnerabilities, implementational vulnerabilities, operational vulnerabilites, …

– Code weaknesses
● XSS, CSRF, SQLI, overflows, race conditions, unchecked error conditions, …
● Data flow, trust relationships, input validation, …

● DAST
– OWASP ZAP (Zed Attack Proxy), Arachni, …

● Standards
– Microsoft’s Security Development Lifecycle (SDL)

– OWASP Application Security Verification Standard (ASVS)

www.geant.orgwww.geant.org35 |

But wait, we’re not done, yet: advertisement II

● Have a look at GÉANT’s Secure Coding Training :-)
– https://wiki.geant.org/display/GSD/Secure+Code+Training

www.geant.orgwww.geant.org36 |

www.geant.orgwww.geant.org37 |

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

14/07/21 37

Thank you

www.geant.org

Any questions?

Next Module: Vulnerability Disclosure

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2).
The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 731122 (GN4-2). 37 |

“Passing static code analysis
doesn’t prove your code is
safe... but failing it pretty
much signals it isn’t.“

 (Dana Epp)

“Treat Input as Hostile“

 (Dowd et al.)

www.geant.orgwww.geant.org38 |

References

● GÉANT Software Reviews
– https://wiki.geant.org/display/GSD/Software+Reviews

● GÉANT Secure Code Training
– https://wiki.geant.org/display/GSD/
Secure+Code+Training

● GÉANT SonarQube pages
– https://wiki.geant.org/display/GSD/SonarQube+-
+source+code+analysis+tool

www.geant.orgwww.geant.org39 |

References

● Source Code Analysis Tools (OWASP)
– https://owasp.org/www-community/
Source_Code_Analysis_Tools

● Free for Open Source Application Security Tools (OWASP)
– https://owasp.org/www-community/
Free_for_Open_Source_Application_Security_Tools

● Source Code Security Analyzers (NIST)
– https://www.nist.gov/itl/ssd/software-quality-
group/source-code-security-analyzers

www.geant.orgwww.geant.org40 |

References

● Static source code analysis tools recommended for CERN developers
– https://security.web.cern.ch/recommendations/
en/code_tools.shtml

● List of tools for static code analysis
– https://en.wikipedia.org/wiki/
List_of_tools_for_static_code_analysis

● NIST Software Assurance Reference Dataset Project (SARD)
– https://samate.nist.gov/SARD/

www.geant.orgwww.geant.org41 |

References

● static analysis tools repository
– https://github.com/analysis-tools-dev/static-
analysis

● SonarQube
– https://www.sonarqube.org/
– https://github.com/SonarSource/sonarqube
– https://docs.sonarqube.org/latest/analysis/scan/
sonarscanner/

● WhiteSource
– https://www.whitesourcesoftware.com/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41

