DNS for Fun and Profit

Roy Arends
Telematica Instituut
roy@dnss.ec

Peter Koch
DENIC e.G.
koch@denic.de

12. DFN-CERT Workshop
Hamburg
03. März 2005
Agenda

- DNS Finally Secure – DNSSEC Status
- The Protocol and Beyond – DNS Fingerprinting
- Security by Obscurity? – IP6.ARPA Side Effects
- Open Relays and Open Resolvers – Anything over DNS
DNSSEC Status Update
DNSSEC Status

- RFC 2065 – January 1997
- RFC 2535 – March 1999
- DNSSEC-bis – IESG approved September 2004
- –bis support in BIND 9.3, NSD
- Testbeds, Secure Islands, (DLV)
DNSSEC-bis – What’s New?

- Protocol changes
 - Limited scope for KEY records
 - New DS record type
 - Type Code Rollover
 - New NSEC data format
 - EDNS0 support mandatory
- The zone walking problem
- Key management
KEY Scope Limited

- KEY RR to carry (public) DNSSEC keys
- ...and others

Problems
- DNS subtyping problem – cannot ask specific questions
- Signing KEYS you don’t understand?

- ~ KEY restricted to DNSSEC keys only

- Other applications (SSH, IPsec) may use dedicated (new) RR types
Delegation Signer (DS) Record

- SIG at parent vs. SIG at child debate
- Do neither – insert one level of indirection
- DS contains signed hash of Key Signing Key
- ~ Easier parent initiated key rollover
- KSK signs Zone Signing Key
- ZSK (or ZSKs) signs zone data
- ~ Easier child initiated key rollover
- KSK and ZSK both DNSKEY RRs at the child zone apex
Type Code Rollover

- *Jakob’s Bug*: trouble with **NXT** after invention of **DS**
- New codes and mnemonics

<table>
<thead>
<tr>
<th>old</th>
<th>KEY</th>
<th>SIG</th>
<th>NXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>new</td>
<td>DNSKEY</td>
<td>RRSIG</td>
<td>NSEC</td>
</tr>
</tbody>
</table>

- Internal structure remains (mostly) unaltered
Zone Walking

- NSEC RR

 example.net NSEC www.example.net MX NS SOA RRSIG NSEC
 www.example.net NSEC example.net A MX RRSIG NSEC

- Chaining through the zone – even with AXFR disabled

- Problem at the Registry level (privacy, data protection)

- \leadsto online signing

- \leadsto NSEC successor (probably hash based)
DNSSEC Deployment

- Latest versions of BIND 9 and NSD support DNSSEC-bis
- Testbeds, workshops, operational recommendations
- EPP support in development
- Tutorials available (e.g. RIPE NCC)
- Registries are actively developing procedures
- Root signing is still under discussion
- Early deployment approaches
DNS Fingerprinting
Why?

- Built with *surveys* in mind
- Mostly interested in the DNS landscape
- You know `version.bind TXT CH`?
- You disabled it?
How?

- Unspecified bogus data handling
- Incorrect handling of proper data
- Implementations have bugs
- Implementations fixed bugs
- Have (stopped having) features
Fingerprinting Requirements

- Nothing may break
- Independent of data served
- Independent of config
- Least possible queries
- Least possible log entries
How? (2)

- DNS message has 16 bits in header
- We use 15 bits (not QR bit (more later))
- DNS query for . (root domain), QTYPE A, QCLASS IN
How? (3)

- Lab setup:
 - BIND 8, BIND 9
 - MS DNS
 - djbdns
- Recorded all received responses in a matrix
- Some matrix crunching
And the results are . . . ?
- VGRS-ATLAS
- BIND4,8,9
- eNom-DNS
- MARADNS
- MyDNS
- Nominum ANS,CNS
- NonSequitur DNS
- Pliant DNS Server
- PowerDNS
- QuickDNS
- Simple DNS plus
- javadns jnamed
- Nomde DNS tunnel
- Viking DNS server
- small HTTP server
- 4d WebSTAR
- Cisco Network Registrar
- NSD1,2
- DNS4me
- TinyDNS
- TotD
- UltraDNS
- pdnsd
- Rbldnsd
- Oak DNS
- Posadis
- Yaku-NS
- sheerdns
- dproxy
- dnrmd
- JDNSS
- RaidenDNSD
- WinGate DNS
- dents
- Incognito DNS Commander
- MS Server NT4,2000,2003
- Net::DNS::Nameserver
- DeleGate DNS proxy
- Netnumber ENUM server
- Runtop Implementation
- Mikrotik Implementation
- Axis Video Network Implementation
- Fasthosts Envisage DNS server
- Ascension SwiftDNS
- Nortel Networks Instant Internet
- Nortel Networks Alteon ACEswitch
- Aethra ATOS Stargate ADSL
- 3Com Office Connect Remote
- Netopia Implementation
- Tzolkin DNS service
- jdns javadns service
What Does **Not** Help

- Active load balancers
- Firewalls check queries (cp-fw1-ai)
- Forwarders
DNS Message Header: Extras

- QR bit 0: request
- QR bit 1: response
- Some implementations responded to responses (see niscc 758884)
- Most imps have been fixed (but not all)
- Can cause loops or query storms
DNS Message Header: Extras(2)

- Some firewalls do reverse lookups of incoming DNS queries
- Some do reverse lookups of all UDP messages
- If you own the reverse space:

 reconnaissance method: *Hi firewall, I can see you :D*

 or just blame somebody else: spoof source address, its UDP remember?
- **TIP**: switch off all DNS lookups in your firewall. It is a denial of service method
IPv6 Properties

- /48 assignment, 65536 /64 subnets, \(\sim 2^{64} \) addresses (\(10^{19} \)) each
- (Port) scanning infeasible
- Addresses can be hidden . . .
- . . .well, not really
- Information leaks:
 - Address generation (Vendor ID)
 - Logs, traces
 - DNS on the wire queries
 - AXFR, NSEC walks
IP6.ARPA Side Effects

- IPv6 reverse mapping leaks information even with AXFR disabled
- NSEC walks dto.
- 2001:DB8::42 →
 2.4.0.8.B.D.0.1.0.0.2.IP6.ARPA
Empty Non-Terminals

- example.net (SOA, NS, ...)
- www.empty.example.net (A, AAAA)
- empty.example.net may be empty
- Query yields NOERROR and empty answer section
- ...BIND 9 bugs nonwithstanding
Searching for 2001:DB8::42

0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA
0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA
0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA

[...]
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA
4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA
2.4.0.8.B.D.0.1.0.0.2.IP6.ARPA
1.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA
Analysis

• Address space enumeration is feasible given IPv6 reverse mapping
• (Why) is this a threat?
• (When) is this a problem?
Potential Countermeasures

- Don’t do IP6.ARPA :-/
- Change protocol semantics
- Insert dummy names (addresses)
- Hide behind DNS wildcards (DON’T!)
 Won’t work with DNSSEC anyway
- Delegate and refuse
 2.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA
 Legitimate tree climb may suffer, e.g. dynamic update
- None of these are recommendations!
Open Resolvers
Shift in Security Consensus

Trend then: Open relays
- Considered *not done* to operate closed relays
- Bandwidth, availability, infrastructure were expensive
- Service sharing was the gentlemen’s approach

Internet now:
- Considered very bad to operate open relays
- Bandwidth, availability, infrastructure not expensive
- Service sharing is considered security nightmare
The Analogy

Internet then:

- closed resolvers *not done*
- General view of DNS: availability is a must
- More users for a resolver: more efficient cache usage

Internet now:

- It seems that focus *has not changed*
- Bulk of the authoritative DNS servers offer recursion
Why is this Bad?

- Cache poisoning
- Cache probing
- DoS on the visibility of domains
- Store and forward bulk data
Cache Poisoning

- Done by trial and error
- Open resolver increases the risk
- Simple test: when does the widowupdate.example.net record expire?
- Then: send a query to the resolver for widowupdate.example.net
- Now: hose the resolver with responses (Meanwhile DoS the authoritative servers for example.net)
Cache Probing

- Check some cache for specific data
- Is some user looking at pr0n? Worse?
Accidental DoS

- Resolving for the world will increase cache size/log size significantly
- This is accidental DoS \rightarrow Service for real users slows down
- Users experience more latency – network is slow
Black Hat DoS

- Reconnaissance: Scanning a /16 (class B) network for open resolvers is trivial
- Simple way: send DNS messages – wait for responses
Intelligent Black Hat DoS

- Send DNS messages with spoofed source address
- Query for a specific domain **under your control**
- Wait for incoming queries at the (your) server
- Much **faster, much harder to detect**
Recruitment

- Now a Black Hat has a bulk of servers that it can use to resolve (redirect messages)
- These servers were not recruited
- They were politely asked to participate
Result

- Now use the bulk of resolvers (say 32K) to query for random names under $VICTIM_DOMAIN$
- Authoritative servers for $VICTIM_DOMAIN$ get hosed by queries
- Result: $VICTIM_DOMAIN$ is virtually disconnected
- Of course, hosing/DoSing higher level domains is much worse!
- These attacks currently happen as we speak
There is hardly any defense against these class of attacks.

Basically, the only defense is: close the open resolvers!
Store and Forward

- Uses proper DNS messages to encapsulate bits of data
- Caches will store these bits of data for future use!
- Think streaming!
- Think bit-torrent seeds!
- Hard to detect
- Hard to defend against
- Simple defense: close the open resolvers
Close Open Resolvers!

- Resolver can either . . .
 - send back REFUSED
 - drop the query as a whole
 - (should not send back a referral to the root)